1. 28 4月, 2016 3 次提交
    • M
      efi: Remove global 'memmap' EFI memory map · 884f4f66
      Matt Fleming 提交于
      Abolish the poorly named EFI memory map, 'memmap'. It is shadowed by a
      bunch of local definitions in various files and having two ways to
      access the EFI memory map ('efi.memmap' vs. 'memmap') is rather
      confusing.
      
      Furthermore, IA64 doesn't even provide this global object, which has
      caused issues when trying to write generic EFI memmap code.
      
      Replace all occurrences with efi.memmap, and convert the remaining
      iterator code to use for_each_efi_mem_desc().
      Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
      Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Luck, Tony <tony.luck@intel.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-efi@vger.kernel.org
      Link: http://lkml.kernel.org/r/1461614832-17633-8-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      884f4f66
    • M
      efi: Iterate over efi.memmap in for_each_efi_memory_desc() · 78ce248f
      Matt Fleming 提交于
      Most of the users of for_each_efi_memory_desc() are equally happy
      iterating over the EFI memory map in efi.memmap instead of 'memmap',
      since the former is usually a pointer to the latter.
      
      For those users that want to specify an EFI memory map other than
      efi.memmap, that can be done using for_each_efi_memory_desc_in_map().
      One such example is in the libstub code where the firmware is queried
      directly for the memory map, it gets iterated over, and then freed.
      
      This change goes part of the way toward deleting the global 'memmap'
      variable, which is not universally available on all architectures
      (notably IA64) and is rather poorly named.
      Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
      Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Leif Lindholm <leif.lindholm@linaro.org>
      Cc: Mark Salter <msalter@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-efi@vger.kernel.org
      Link: http://lkml.kernel.org/r/1461614832-17633-7-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      78ce248f
    • A
      efi/arm*: Drop writable mapping of the UEFI System table · 14c43be6
      Ard Biesheuvel 提交于
      Commit:
      
        2eec5ded ("efi/arm-init: Use read-only early mappings")
      
      updated the early ARM UEFI init code to create the temporary, early
      mapping of the UEFI System table using read-only attributes, as a
      hardening measure against inadvertent modification.
      
      However, this still leaves the permanent, writable mapping of the UEFI
      System table, which is only ever referenced during invocations of UEFI
      Runtime Services, at which time the UEFI virtual mapping is available,
      which also covers the system table. (This is guaranteed by the fact that
      SetVirtualAddressMap(), which is a runtime service itself, converts
      various entries in the table to their virtual equivalents, which implies
      that the table must be covered by a RuntimeServicesData region that has
      the EFI_MEMORY_RUNTIME attribute.)
      
      So instead of creating this permanent mapping, record the virtual address
      of the system table inside the UEFI virtual mapping, and dereference that
      when accessing the table. This protects the contents of the system table
      from inadvertent (or deliberate) modification when no UEFI Runtime
      Services calls are in progress.
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Leif Lindholm <leif.lindholm@linaro.org>
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-efi@vger.kernel.org
      Link: http://lkml.kernel.org/r/1461614832-17633-3-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      14c43be6
  2. 01 4月, 2016 1 次提交
    • A
      efi/arm64: Don't apply MEMBLOCK_NOMAP to UEFI memory map mapping · 7cc8cbcf
      Ard Biesheuvel 提交于
      Commit 4dffbfc4 ("arm64/efi: mark UEFI reserved regions as
      MEMBLOCK_NOMAP") updated the mapping logic of both the RuntimeServices
      regions as well as the kernel's copy of the UEFI memory map to set the
      MEMBLOCK_NOMAP flag, which causes these regions to be omitted from the
      kernel direct mapping, and from being covered by a struct page.
      For the RuntimeServices regions, this is an obvious win, since the contents
      of these regions have significance to the firmware executable code itself,
      and are mapped in the EFI page tables using attributes that are described in
      the UEFI memory map, and which may differ from the attributes we use for
      mapping system RAM. It also prevents the contents from being modified
      inadvertently, since the EFI page tables are only live during runtime
      service invocations.
      
      None of these concerns apply to the allocation that covers the UEFI memory
      map, since it is entirely owned by the kernel. Setting the MEMBLOCK_NOMAP on
      the region did allow us to use ioremap_cache() to map it both on arm64 and
      on ARM, since the latter does not allow ioremap_cache() to be used on
      regions that are covered by a struct page.
      
      The ioremap_cache() on ARM restriction will be lifted in the v4.7 timeframe,
      but in the mean time, it has been reported that commit 4dffbfc4 causes
      a regression on 64k granule kernels. This is due to the fact that, given
      the 64 KB page size, the region that we end up removing from the kernel
      direct mapping is rounded up to 64 KB, and this 64 KB page frame may be
      shared with the initrd when booting via GRUB (which does not align its
      EFI_LOADER_DATA allocations to 64 KB like the stub does). This will crash
      the kernel as soon as it tries to access the initrd.
      
      Since the issue is specific to arm64, revert back to memblock_reserve()'ing
      the UEFI memory map when running on arm64. This is a temporary fix for v4.5
      and v4.6, and will be superseded in the v4.7 timeframe when we will be able
      to move back to memblock_reserve() unconditionally.
      
      Fixes: 4dffbfc4 ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP")
      Reported-by: NMark Salter <msalter@redhat.com>
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Cc: Leif Lindholm <leif.lindholm@linaro.org>
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Jeremy Linton <jeremy.linton@arm.com>
      Cc: Mark Langsdorf <mlangsdo@redhat.com>
      Cc: <stable@vger.kernel.org> # v4.5
      Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
      7cc8cbcf
  3. 22 2月, 2016 1 次提交
  4. 10 12月, 2015 3 次提交
  5. 27 11月, 2015 2 次提交
  6. 25 11月, 2015 1 次提交
    • M
      arm64: efi: correctly map runtime regions · 3b12acf4
      Mark Rutland 提交于
      The kernel may use a page granularity of 4K, 16K, or 64K depending on
      configuration.
      
      When mapping EFI runtime regions, we use memrange_efi_to_native to round
      the physical base address of a region down to a kernel page boundary,
      and round the size up to a kernel page boundary, adding the residue left
      over from rounding down the physical base address. We do not round down
      the virtual base address.
      
      In __create_mapping we account for the offset of the virtual base from a
      granule boundary, adding the residue to the size before rounding the
      base down to said granule boundary.
      
      Thus we account for the residue twice, and when the residue is non-zero
      will cause __create_mapping to map an additional page at the end of the
      region. Depending on the memory map, this page may be in a region we are
      not intended/permitted to map, or may clash with a different region that
      we wish to map. In typical cases, mapping the next item in the memory
      map will overwrite the erroneously created entry, as we sort the memory
      map in the stub.
      
      As __create_mapping can cope with base addresses which are not page
      aligned, we can instead rely on it to map the region appropriately, and
      simplify efi_virtmap_init by removing the unnecessary code.
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Leif Lindholm <leif.lindholm@linaro.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      3b12acf4
  7. 18 11月, 2015 1 次提交
  8. 28 10月, 2015 1 次提交
    • A
      efi: Use correct type for struct efi_memory_map::phys_map · 44511fb9
      Ard Biesheuvel 提交于
      We have been getting away with using a void* for the physical
      address of the UEFI memory map, since, even on 32-bit platforms
      with 64-bit physical addresses, no truncation takes place if the
      memory map has been allocated by the firmware (which only uses
      1:1 virtually addressable memory), which is usually the case.
      
      However, commit:
      
        0f96a99d ("efi: Add "efi_fake_mem" boot option")
      
      adds code that clones and modifies the UEFI memory map, and the
      clone may live above 4 GB on 32-bit platforms.
      
      This means our use of void* for struct efi_memory_map::phys_map has
      graduated from 'incorrect but working' to 'incorrect and
      broken', and we need to fix it.
      
      So redefine struct efi_memory_map::phys_map as phys_addr_t, and
      get rid of a bunch of casts that are now unneeded.
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: izumi.taku@jp.fujitsu.com
      Cc: kamezawa.hiroyu@jp.fujitsu.com
      Cc: linux-efi@vger.kernel.org
      Cc: matt.fleming@intel.com
      Link: http://lkml.kernel.org/r/1445593697-1342-1-git-send-email-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      44511fb9
  9. 12 10月, 2015 2 次提交
  10. 07 10月, 2015 2 次提交
  11. 01 10月, 2015 1 次提交
    • A
      arm64/efi: Fix boot crash by not padding between EFI_MEMORY_RUNTIME regions · 0ce3cc00
      Ard Biesheuvel 提交于
      The new Properties Table feature introduced in UEFIv2.5 may
      split memory regions that cover PE/COFF memory images into
      separate code and data regions. Since these regions only differ
      in the type (runtime code vs runtime data) and the permission
      bits, but not in the memory type attributes (UC/WC/WT/WB), the
      spec does not require them to be aligned to 64 KB.
      
      Since the relative offset of PE/COFF .text and .data segments
      cannot be changed on the fly, this means that we can no longer
      pad out those regions to be mappable using 64 KB pages.
      Unfortunately, there is no annotation in the UEFI memory map
      that identifies data regions that were split off from a code
      region, so we must apply this logic to all adjacent runtime
      regions whose attributes only differ in the permission bits.
      
      So instead of rounding each memory region to 64 KB alignment at
      both ends, only round down regions that are not directly
      preceded by another runtime region with the same type
      attributes. Since the UEFI spec does not mandate that the memory
      map be sorted, this means we also need to sort it first.
      
      Note that this change will result in all EFI_MEMORY_RUNTIME
      regions whose start addresses are not aligned to the OS page
      size to be mapped with executable permissions (i.e., on kernels
      compiled with 64 KB pages). However, since these mappings are
      only active during the time that UEFI Runtime Services are being
      invoked, the window for abuse is rather small.
      Tested-by: NMark Salter <msalter@redhat.com>
      Tested-by: Mark Rutland <mark.rutland@arm.com> [UEFI 2.4 only]
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      Reviewed-by: NMark Salter <msalter@redhat.com>
      Reviewed-by: NMark Rutland <mark.rutland@arm.com>
      Cc: <stable@vger.kernel.org> # v4.0+
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Leif Lindholm <leif.lindholm@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: linux-kernel@vger.kernel.org
      Link: http://lkml.kernel.org/r/1443218539-7610-3-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      0ce3cc00
  12. 28 7月, 2015 1 次提交
  13. 28 5月, 2015 1 次提交
    • D
      e820, efi: add ACPI 6.0 persistent memory types · ad5fb870
      Dan Williams 提交于
      ACPI 6.0 formalizes e820-type-7 and efi-type-14 as persistent memory.
      Mark it "reserved" and allow it to be claimed by a persistent memory
      device driver.
      
      This definition is in addition to the Linux kernel's existing type-12
      definition that was recently added in support of shipping platforms with
      NVDIMM support that predate ACPI 6.0 (which now classifies type-12 as
      OEM reserved).
      
      Note, /proc/iomem can be consulted for differentiating legacy
      "Persistent Memory (legacy)" E820_PRAM vs standard "Persistent Memory"
      E820_PMEM.
      
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jens Axboe <axboe@fb.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Acked-by: NJeff Moyer <jmoyer@redhat.com>
      Acked-by: NAndy Lutomirski <luto@amacapital.net>
      Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      ad5fb870
  14. 21 3月, 2015 1 次提交
    • W
      arm64: efi: don't restore TTBR0 if active_mm points at init_mm · 130c93fd
      Will Deacon 提交于
      init_mm isn't a normal mm: it has swapper_pg_dir as its pgd (which
      contains kernel mappings) and is used as the active_mm for the idle
      thread.
      
      When restoring the pgd after an EFI call, we write current->active_mm
      into TTBR0. If the current task is actually the idle thread (e.g. when
      initialising the EFI RTC before entering userspace), then the TLB can
      erroneously populate itself with junk global entries as a result of
      speculative table walks.
      
      When we do eventually return to userspace, the task can end up hitting
      these junk mappings leading to lockups, corruption or crashes.
      
      This patch fixes the problem in the same way as the CPU suspend code by
      ensuring that we never switch to the init_mm in efi_set_pgd and instead
      point TTBR0 at the zero page. A check is also added to cpu_switch_mm to
      BUG if we get passed swapper_pg_dir.
      Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Fixes: f3cdfd23 ("arm64/efi: move SetVirtualAddressMap() to UEFI stub")
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      130c93fd
  15. 14 3月, 2015 1 次提交
  16. 22 1月, 2015 1 次提交
  17. 17 1月, 2015 1 次提交
  18. 13 1月, 2015 3 次提交
  19. 08 1月, 2015 1 次提交
    • A
      arm64/efi: add missing call to early_ioremap_reset() · 0e63ea48
      Ard Biesheuvel 提交于
      The early ioremap support introduced by patch bf4b558e
      ("arm64: add early_ioremap support") failed to add a call to
      early_ioremap_reset() at an appropriate time. Without this call,
      invocations of early_ioremap etc. that are done too late will go
      unnoticed and may cause corruption.
      
      This is exactly what happened when the first user of this feature
      was added in patch f84d0275 ("arm64: add EFI runtime services").
      The early mapping of the EFI memory map is unmapped during an early
      initcall, at which time the early ioremap support is long gone.
      
      Fix by adding the missing call to early_ioremap_reset() to
      setup_arch(), and move the offending early_memunmap() to right after
      the point where the early mapping of the EFI memory map is last used.
      
      Fixes: f84d0275 ("arm64: add EFI runtime services")
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NLeif Lindholm <leif.lindholm@linaro.org>
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      0e63ea48
  20. 05 11月, 2014 4 次提交
  21. 04 10月, 2014 3 次提交
    • L
      arm64: efi: Format EFI memory type & attrs with efi_md_typeattr_format() · 65ba758f
      Laszlo Ersek 提交于
      An example log excerpt demonstrating the change:
      
      Before the patch:
      
      > Processing EFI memory map:
      >   0x000040000000-0x000040000fff [Loader Data]
      >   0x000040001000-0x00004007ffff [Conventional Memory]
      >   0x000040080000-0x00004072afff [Loader Data]
      >   0x00004072b000-0x00005fdfffff [Conventional Memory]
      >   0x00005fe00000-0x00005fe0ffff [Loader Data]
      >   0x00005fe10000-0x0000964e8fff [Conventional Memory]
      >   0x0000964e9000-0x0000964e9fff [Loader Data]
      >   0x0000964ea000-0x000096c52fff [Loader Code]
      >   0x000096c53000-0x00009709dfff [Boot Code]*
      >   0x00009709e000-0x0000970b3fff [Runtime Code]*
      >   0x0000970b4000-0x0000970f4fff [Runtime Data]*
      >   0x0000970f5000-0x000097117fff [Runtime Code]*
      >   0x000097118000-0x000097199fff [Runtime Data]*
      >   0x00009719a000-0x0000971dffff [Runtime Code]*
      >   0x0000971e0000-0x0000997f8fff [Conventional Memory]
      >   0x0000997f9000-0x0000998f1fff [Boot Data]*
      >   0x0000998f2000-0x0000999eafff [Conventional Memory]
      >   0x0000999eb000-0x00009af09fff [Boot Data]*
      >   0x00009af0a000-0x00009af21fff [Conventional Memory]
      >   0x00009af22000-0x00009af46fff [Boot Data]*
      >   0x00009af47000-0x00009af5bfff [Conventional Memory]
      >   0x00009af5c000-0x00009afe1fff [Boot Data]*
      >   0x00009afe2000-0x00009afe2fff [Conventional Memory]
      >   0x00009afe3000-0x00009c01ffff [Boot Data]*
      >   0x00009c020000-0x00009efbffff [Conventional Memory]
      >   0x00009efc0000-0x00009f14efff [Boot Code]*
      >   0x00009f14f000-0x00009f162fff [Runtime Code]*
      >   0x00009f163000-0x00009f194fff [Runtime Data]*
      >   0x00009f195000-0x00009f197fff [Boot Data]*
      >   0x00009f198000-0x00009f198fff [Runtime Data]*
      >   0x00009f199000-0x00009f1acfff [Conventional Memory]
      >   0x00009f1ad000-0x00009f1affff [Boot Data]*
      >   0x00009f1b0000-0x00009f1b0fff [Runtime Data]*
      >   0x00009f1b1000-0x00009fffffff [Boot Data]*
      >   0x000004000000-0x000007ffffff [Memory Mapped I/O]
      >   0x000009010000-0x000009010fff [Memory Mapped I/O]
      
      After the patch:
      
      > Processing EFI memory map:
      >   0x000040000000-0x000040000fff [Loader Data        |   |  |  |  |   |WB|WT|WC|UC]
      >   0x000040001000-0x00004007ffff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x000040080000-0x00004072afff [Loader Data        |   |  |  |  |   |WB|WT|WC|UC]
      >   0x00004072b000-0x00005fdfffff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x00005fe00000-0x00005fe0ffff [Loader Data        |   |  |  |  |   |WB|WT|WC|UC]
      >   0x00005fe10000-0x0000964e8fff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x0000964e9000-0x0000964e9fff [Loader Data        |   |  |  |  |   |WB|WT|WC|UC]
      >   0x0000964ea000-0x000096c52fff [Loader Code        |   |  |  |  |   |WB|WT|WC|UC]
      >   0x000096c53000-0x00009709dfff [Boot Code          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009709e000-0x0000970b3fff [Runtime Code       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x0000970b4000-0x0000970f4fff [Runtime Data       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x0000970f5000-0x000097117fff [Runtime Code       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x000097118000-0x000097199fff [Runtime Data       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x00009719a000-0x0000971dffff [Runtime Code       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x0000971e0000-0x0000997f8fff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x0000997f9000-0x0000998f1fff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x0000998f2000-0x0000999eafff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x0000999eb000-0x00009af09fff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009af0a000-0x00009af21fff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x00009af22000-0x00009af46fff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009af47000-0x00009af5bfff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x00009af5c000-0x00009afe1fff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009afe2000-0x00009afe2fff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x00009afe3000-0x00009c01ffff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009c020000-0x00009efbffff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x00009efc0000-0x00009f14efff [Boot Code          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f14f000-0x00009f162fff [Runtime Code       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f163000-0x00009f194fff [Runtime Data       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f195000-0x00009f197fff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f198000-0x00009f198fff [Runtime Data       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f199000-0x00009f1acfff [Conventional Memory|   |  |  |  |   |WB|WT|WC|UC]
      >   0x00009f1ad000-0x00009f1affff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f1b0000-0x00009f1b0fff [Runtime Data       |RUN|  |  |  |   |WB|WT|WC|UC]*
      >   0x00009f1b1000-0x00009fffffff [Boot Data          |   |  |  |  |   |WB|WT|WC|UC]*
      >   0x000004000000-0x000007ffffff [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC]
      >   0x000009010000-0x000009010fff [Memory Mapped I/O  |RUN|  |  |  |   |  |  |  |UC]
      
      The attribute bitmap is now displayed, in decoded form.
      Signed-off-by: NLaszlo Ersek <lersek@redhat.com>
      Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      65ba758f
    • D
      arm64/efi: Do not enter virtual mode if booting with efi=noruntime or noefi · 6632210f
      Dave Young 提交于
      In case efi runtime disabled via noefi kernel cmdline
      arm64_enter_virtual_mode should error out.
      
      At the same time move early_memunmap(memmap.map, mapsize) to the
      beginning of the function or it will leak early mem.
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Reviewed-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      6632210f
    • D
      arm64/efi: uefi_init error handling fix · 88f8abd5
      Dave Young 提交于
      There's one early memmap leak in uefi_init error path, fix it and
      slightly tune the error handling code.
      Signed-off-by: NDave Young <dyoung@redhat.com>
      Acked-by: NMark Salter <msalter@redhat.com>
      Reported-by: NWill Deacon <will.deacon@arm.com>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      88f8abd5
  22. 23 9月, 2014 1 次提交
    • C
      Revert "arm64: dmi: Add SMBIOS/DMI support" · 6f325eaa
      Catalin Marinas 提交于
      This reverts commit 668ebd10.
      
      ... because of lots of warnings during boot if Linux isn't started as an EFI
      application:
      
      WARNING: CPU: 4 PID: 1 at
      /work/Linux/linux-2.6-aarch64/drivers/firmware/dmi_scan.c:591 dmi_matches+0x10c/0x110()
      dmi check: not initialized yet.
      Modules linked in:
      CPU: 4 PID: 1 Comm: swapper/0 Not tainted 3.17.0-rc4+ #606
      Call trace:
      [<ffffffc000087fb0>] dump_backtrace+0x0/0x124
      [<ffffffc0000880e4>] show_stack+0x10/0x1c
      [<ffffffc0004d58f8>] dump_stack+0x74/0xb8
      [<ffffffc0000ab640>] warn_slowpath_common+0x8c/0xb4
      [<ffffffc0000ab6b4>] warn_slowpath_fmt+0x4c/0x58
      [<ffffffc0003f2d7c>] dmi_matches+0x108/0x110
      [<ffffffc0003f2da8>] dmi_check_system+0x24/0x68
      [<ffffffc0006974c4>] atkbd_init+0x10/0x34
      [<ffffffc0000814ac>] do_one_initcall+0x88/0x1a0
      [<ffffffc00067aab4>] kernel_init_freeable+0x148/0x1e8
      [<ffffffc0004d2c64>] kernel_init+0x10/0xd4
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      6f325eaa
  23. 22 9月, 2014 1 次提交
    • Y
      arm64: dmi: Add SMBIOS/DMI support · 668ebd10
      Yi Li 提交于
      SMBIOS is important for server hardware vendors. It implements a spec for
      providing descriptive information about the platform. Things like serial
      numbers, physical layout of the ports, build configuration data, and the like.
      
      This has been tested by dmidecode and lshw tools.
      
      This patch adds the call to dmi_scan_machine() to arm64_enter_virtual_mode(),
      as that is the point where the EFI Configuration Tables are registered as
      being available. It needs to be in an early_initcall anyway as dmi_id_init(),
      which is an arch_initcall itself, depends on dmi_scan_machine() having been
      called already.
      Signed-off-by: NYi Li <yi.li@linaro.org>
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      668ebd10
  24. 22 8月, 2014 1 次提交
  25. 20 8月, 2014 1 次提交
  26. 19 7月, 2014 1 次提交