- 17 5月, 2018 1 次提交
-
-
由 Masahiro Yamada 提交于
CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX was selected by BLACKFIN, METAG. They were removed by commit 4ba66a97 ("arch: remove blackfin port"), commit bb6fb6df ("metag: Remove arch/metag/"), respectively. No more architecture enables CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX. Clean up the export.h headers. I am keeping VMLINUX_SYMBOL() and VMLINUX_SYMBOL_STR() because they are widely used. Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: NSam Ravnborg <sam@ravnborg.org>
-
- 04 2月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
The modversion symbol CRCs are emitted as ELF symbols, which allows us to easily populate the kcrctab sections by relying on the linker to associate each kcrctab slot with the correct value. This has a couple of downsides: - Given that the CRCs are treated as memory addresses, we waste 4 bytes for each CRC on 64 bit architectures, - On architectures that support runtime relocation, a R_<arch>_RELATIVE relocation entry is emitted for each CRC value, which identifies it as a quantity that requires fixing up based on the actual runtime load offset of the kernel. This results in corrupted CRCs unless we explicitly undo the fixup (and this is currently being handled in the core module code) - Such runtime relocation entries take up 24 bytes of __init space each, resulting in a x8 overhead in [uncompressed] kernel size for CRCs. Switching to explicit 32 bit values on 64 bit architectures fixes most of these issues, given that 32 bit values are not treated as quantities that require fixing up based on the actual runtime load offset. Note that on some ELF64 architectures [such as PPC64], these 32-bit values are still emitted as [absolute] runtime relocatable quantities, even if the value resolves to a build time constant. Since relative relocations are always resolved at build time, this patch enables MODULE_REL_CRCS on powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC references into relative references into .rodata where the actual CRC value is stored. So redefine all CRC fields and variables as u32, and redefine the __CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using inline assembler (which is necessary since 64-bit C code cannot use 32-bit types to hold memory addresses, even if they are ultimately resolved using values that do not exceed 0xffffffff). To avoid potential problems with legacy 32-bit architectures using legacy toolchains, the equivalent C definition of the kcrctab entry is retained for 32-bit architectures. Note that this mostly reverts commit d4703aef ("module: handle ppc64 relocating kcrctabs when CONFIG_RELOCATABLE=y") Acked-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 12月, 2016 1 次提交
-
-
由 Linus Torvalds 提交于
This reverts commit 8ab2ae65. I loved that commit because of how it explained what the problem with newer versions of binutils were, but the actual patch itself turns out to not work very well. It has two problems: - a zero CRC value isn't actually right. It happens to work for the case where both sides of the equation fail at giving the symbol a crc, but there are cases where the users of the exported symbol get the right crc (due to seeing the C declarations), but the actual exporting itself does not (due to the whole weak asm symbol issue). So then the module load fails after all - we did have a crc for the symbol, but we couldn't match it with the loaded module. - it seems that the alpha assembler has special semantics for the '.set' directive, and on alpha it doesn't actually set the value of the specified symbol at all, it is instead used to set various assembly modes (eg ".set noat" and ".set noreorder"). So using ".set" to set the symbol value would just cause build failures on alpha. I'm sure we'll find some other workaround for these issues (hopefully that involves getting rid of modversions entirely some day, but people are also talking about just using smarter tools). But for now we'll just fall back on commit faaae2a5 ("Re-enable CONFIG_MODVERSIONS in a slightly weaker form") that just let's a missing crc through. Reported-by: NJan Stancek <jstancek@redhat.com> Reported-by: NPhilip Müller <philm@manjaro.org> Reported-by: NGuenter Roeck <linux@roeck-us.net> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 12月, 2016 1 次提交
-
-
由 Arnd Bergmann 提交于
With binutils-2.26 and before, a weak missing symbol was kept during the final link, and a missing CRC for an export would lead to that CRC being treated as zero implicitly. With binutils-2.27, the crc symbol gets dropped, and any module trying to use it will fail to load. This sets the weak CRC symbol to zero explicitly, making it defined in vmlinux, which in turn lets us load the modules referring to that CRC. The comment above the __CRC_SYMBOL macro suggests that this was always the intention, although it also seems that all symbols defined in C have a correct CRC these days, and only the exports that are now done in assembly need this. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Tested-by: NAdam Borowski <kilobyte@angband.pl> Cc: stable@kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 10月, 2016 1 次提交
-
-
由 Masahiro Yamada 提交于
The use of config_enabled() is ambiguous. For config options, IS_ENABLED(), IS_REACHABLE(), etc. will make intention clearer. Sometimes config_enabled() has been used for non-config options because it is useful to check whether the given symbol is defined or not. I have been tackling on deprecating config_enabled(), and now is the time to finish this work. Some new users have appeared for v4.9-rc1, but it is trivial to replace them: - arch/x86/mm/kaslr.c replace config_enabled() with IS_ENABLED() because CONFIG_X86_ESPFIX64 and CONFIG_EFI are boolean. - include/asm-generic/export.h replace config_enabled() with __is_defined(). Then, config_enabled() can be removed now. Going forward, please use IS_ENABLED(), IS_REACHABLE(), etc. for config options, and __is_defined() for non-config symbols. Link: http://lkml.kernel.org/r/1476616078-32252-1-git-send-email-yamada.masahiro@socionext.comSigned-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Acked-by: NIngo Molnar <mingo@kernel.org> Acked-by: NNicolas Pitre <nicolas.pitre@linaro.org> Cc: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kees Cook <keescook@chromium.org> Cc: Michal Marek <mmarek@suse.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Garnier <thgarnie@google.com> Cc: Paul Bolle <pebolle@tiscali.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 8月, 2016 1 次提交
-
-
由 Al Viro 提交于
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This commit just adds the default implementation; most of the architectures can simply add export.h to asm/Kbuild and start using <asm/export.h> from assembler. The rest needs to have their <asm/export.h> define everal macros and then explicitly include <asm-generic/export.h> One area where the things might diverge from default is the alignment; normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for unsigned long and for struct kernel_symbol. Unfortunately, amd64 and m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN for kernel_symbol and unsigned long resp. And no, __alignof__ would not do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16. More serious source of unpleasantness is treatment of function descriptors on architectures that have those. Things like ppc64, parisc, ia64, etc. need more than the address of the first insn to call an arbitrary function. As the result, their representation of pointers to functions is not the typical "address of the entry point" - it's an address of a small static structure containing all the required information (including the entry point, of course). Sadly, the asm-side conventions differ in what the function name refers to - entry point or the function descriptor. On ppc64 we do the latter; bar: .quad foo is what void (*bar)(void) = foo; turns into and the rare places where we need to explicitly work with the label of entry point are dealt with as DOTSYM(foo). For our purposes it's ideal - generic macros are usable. However, parisc would have foo and P%foo used for label of entry point and address of the function descriptor and bar: .long P%foo woudl be used instead. ia64 goes similar to parisc in that respect, except that there it's @fptr(foo) rather than P%foo. Such architectures need to define KSYM_FUNC that would turn a function name into whatever is needed to refer to function descriptor. What's more, on such architectures we need to know whether we are exporting a function or an object - in assembler we have to tell that explicitly, to decide whether we want EXPORT_SYMBOL(foo) produce e.g. __ksymtab_foo: .quad foo or __ksymtab_foo: .quad @fptr(foo) For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for exports of data objects. On normal architectures it's the same thing as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the right one needs to be used. Most of the exports are functions, so we keep EXPORT_SYMBOL for those... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-