1. 13 12月, 2015 1 次提交
    • C
      kernel: remove stop_machine() Kconfig dependency · 86fffe4a
      Chris Wilson 提交于
      Currently the full stop_machine() routine is only enabled on SMP if
      module unloading is enabled, or if the CPUs are hotpluggable.  This
      leads to configurations where stop_machine() is broken as it will then
      only run the callback on the local CPU with irqs disabled, and not stop
      the other CPUs or run the callback on them.
      
      For example, this breaks MTRR setup on x86 in certain configs since
      ea8596bb ("kprobes/x86: Remove unused text_poke_smp() and
      text_poke_smp_batch() functions") as the MTRR is only established on the
      boot CPU.
      
      This patch removes the Kconfig option for STOP_MACHINE and uses the SMP
      and HOTPLUG_CPU config options to compile the correct stop_machine() for
      the architecture, removing the false dependency on MODULE_UNLOAD in the
      process.
      
      Link: https://lkml.org/lkml/2014/10/8/124
      References: https://bugs.freedesktop.org/show_bug.cgi?id=84794Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
      Cc: Pranith Kumar <bobby.prani@gmail.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: H. Peter Anvin <hpa@linux.intel.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Iulia Manda <iulia.manda21@gmail.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Chuck Ebbert <cebbert.lkml@gmail.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      86fffe4a
  2. 20 10月, 2015 2 次提交
    • O
      stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark() · c00166d8
      Oleg Nesterov 提交于
      1. Change smpboot_unpark_thread() to check ->selfparking, just
         like smpboot_park_thread() does.
      
      2. Introduce stop_machine_unpark() which sets ->enabled and calls
         kthread_unpark().
      
      3. Change smpboot_thread_call() and cpu_stop_init() to call
         stop_machine_unpark() by hand.
      
      This way:
      
          - IMO the ->selfparking logic becomes more consistent.
      
          - We can kill the smp_hotplug_thread->pre_unpark() method.
      
          - We can easily unpark the stopper thread earlier. Say, we
            can move stop_machine_unpark() from smpboot_thread_call()
            to sched_cpu_active() as Peter suggests.
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: heiko.carstens@de.ibm.com
      Link: http://lkml.kernel.org/r/20151009160049.GA10166@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      c00166d8
    • O
      stop_machine: Ensure that a queued callback will be called before cpu_stop_park() · 233e7f26
      Oleg Nesterov 提交于
      cpu_stop_queue_work() checks stopper->enabled before it queues the
      work, but ->enabled == T can only guarantee cpu_stop_signal_done()
      if we race with cpu_down().
      
      This is not enough for stop_two_cpus() or stop_machine(), they will
      deadlock if multi_cpu_stop() won't be called by one of the target
      CPU's. stop_machine/stop_cpus are fine, they rely on stop_cpus_mutex.
      But stop_two_cpus() has to check cpu_active() to avoid the same race
      with hotplug, and this check is very unobvious and probably not even
      correct if we race with cpu_up().
      
      Change cpu_down() pass to clear ->enabled before cpu_stopper_thread()
      flushes the pending ->works and returns with KTHREAD_SHOULD_PARK set.
      
      Note also that smpboot_thread_call() calls cpu_stop_unpark() which
      sets enabled == T at CPU_ONLINE stage, so this CPU can't go away until
      cpu_stopper_thread() is called at least once. This all means that if
      cpu_stop_queue_work() succeeds, we know that work->fn() will be called.
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: heiko.carstens@de.ibm.com
      Link: http://lkml.kernel.org/r/20151008145131.GA18139@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      233e7f26
  3. 03 8月, 2015 2 次提交
  4. 09 10月, 2013 1 次提交
  5. 29 3月, 2012 1 次提交
  6. 01 11月, 2011 1 次提交
    • P
      stop_machine.h: fix implicit use of smp.h for smp_processor_id · bb2eac66
      Paul Gortmaker 提交于
      This will show up on MIPS when we fix all the implicit header presences
      that are because of module.h being everywhere.
      
      In file included from kernel/trace/ftrace.c:16:
      include/linux/stop_machine.h: In function 'stop_one_cpu':
      include/linux/stop_machine.h:50: error: implicit declaration of function 'smp_processor_id'
      include/linux/stop_machine.h: In function 'stop_cpus':
      include/linux/stop_machine.h:80: error: implicit declaration of function 'raw_smp_processor_id'
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      bb2eac66
  7. 28 6月, 2011 3 次提交
    • S
      x86, mtrr: use stop_machine APIs for doing MTRR rendezvous · 192d8857
      Suresh Siddha 提交于
      MTRR rendezvous sequence is not implemened using stop_machine() before, as this
      gets called both from the process context aswell as the cpu online paths
      (where the cpu has not come online and the interrupts are disabled etc).
      
      Now that we have a new stop_machine_from_inactive_cpu() API, use it for
      rendezvous during mtrr init of a logical processor that is coming online.
      
      For the rest (runtime MTRR modification, system boot, resume paths), use
      stop_machine() to implement the rendezvous sequence. This will consolidate and
      cleanup the code.
      Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Link: http://lkml.kernel.org/r/20110623182057.076997177@sbsiddha-MOBL3.sc.intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      192d8857
    • T
      stop_machine: implement stop_machine_from_inactive_cpu() · f740e6cd
      Tejun Heo 提交于
      Currently, mtrr wants stop_machine functionality while a CPU is being
      brought up.  As stop_machine() requires the calling CPU to be active,
      mtrr implements its own stop_machine using stop_one_cpu() on each
      online CPU.  This doesn't only unnecessarily duplicate complex logic
      but also introduces a possibility of deadlock when it races against
      the generic stop_machine().
      
      This patch implements stop_machine_from_inactive_cpu() to serve such
      use cases.  Its functionality is basically the same as stop_machine();
      however, it should be called from a CPU which isn't active and doesn't
      depend on working scheduling on the calling CPU.
      
      This is achieved by using busy loops for synchronization and
      open-coding stop_cpus queuing and waiting with direct invocation of
      fn() for local CPU inbetween.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Link: http://lkml.kernel.org/r/20110623182056.982526827@sbsiddha-MOBL3.sc.intel.comSigned-off-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      f740e6cd
    • S
      x86, mtrr: lock stop machine during MTRR rendezvous sequence · 6d3321e8
      Suresh Siddha 提交于
      MTRR rendezvous sequence using stop_one_cpu_nowait() can potentially
      happen in parallel with another system wide rendezvous using
      stop_machine(). This can lead to deadlock (The order in which
      works are queued can be different on different cpu's. Some cpu's
      will be running the first rendezvous handler and others will be running
      the second rendezvous handler. Each set waiting for the other set to join
      for the system wide rendezvous, leading to a deadlock).
      
      MTRR rendezvous sequence is not implemented using stop_machine() as this
      gets called both from the process context aswell as the cpu online paths
      (where the cpu has not come online and the interrupts are disabled etc).
      stop_machine() works with only online cpus.
      
      For now, take the stop_machine mutex in the MTRR rendezvous sequence that
      gets called from an online cpu (here we are in the process context
      and can potentially sleep while taking the mutex). And the MTRR rendezvous
      that gets triggered during cpu online doesn't need to take this stop_machine
      lock (as the stop_machine() already ensures that there is no cpu hotplug
      going on in parallel by doing get_online_cpus())
      
          TBD: Pursue a cleaner solution of extending the stop_machine()
               infrastructure to handle the case where the calling cpu is
               still not online and use this for MTRR rendezvous sequence.
      
      fixes: https://bugzilla.novell.com/show_bug.cgi?id=672008Reported-by: NVadim Kotelnikov <vadimuzzz@inbox.ru>
      Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Link: http://lkml.kernel.org/r/20110623182056.807230326@sbsiddha-MOBL3.sc.intel.com
      Cc: stable@kernel.org # 2.6.35+, backport a week or two after this gets more testing in mainline
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      6d3321e8
  8. 20 6月, 2011 1 次提交
  9. 31 3月, 2011 1 次提交
  10. 14 10月, 2010 1 次提交
  11. 08 5月, 2010 1 次提交
    • T
      cpu_stop: add dummy implementation for UP · bbf1bb3e
      Tejun Heo 提交于
      When !CONFIG_SMP, cpu_stop functions weren't defined at all which
      could lead to build failures if UP code uses cpu_stop facility.  Add
      dummy cpu_stop implementation for UP.  The waiting variants execute
      the work function directly with preempt disabled and
      stop_one_cpu_nowait() schedules a workqueue work.
      
      Makefile and ifdefs around stop_machine implementation are updated to
      accomodate CONFIG_SMP && !CONFIG_STOP_MACHINE case.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reported-by: NIngo Molnar <mingo@elte.hu>
      bbf1bb3e
  12. 07 5月, 2010 2 次提交
    • T
      stop_machine: reimplement using cpu_stop · 3fc1f1e2
      Tejun Heo 提交于
      Reimplement stop_machine using cpu_stop.  As cpu stoppers are
      guaranteed to be available for all online cpus,
      stop_machine_create/destroy() are no longer necessary and removed.
      
      With resource management and synchronization handled by cpu_stop, the
      new implementation is much simpler.  Asking the cpu_stop to execute
      the stop_cpu() state machine on all online cpus with cpu hotplug
      disabled is enough.
      
      stop_machine itself doesn't need to manage any global resources
      anymore, so all per-instance information is rolled into struct
      stop_machine_data and the mutex and all static data variables are
      removed.
      
      The previous implementation created and destroyed RT workqueues as
      necessary which made stop_machine() calls highly expensive on very
      large machines.  According to Dimitri Sivanich, preventing the dynamic
      creation/destruction makes booting faster more than twice on very
      large machines.  cpu_stop resources are preallocated for all online
      cpus and should have the same effect.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NRusty Russell <rusty@rustcorp.com.au>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Dimitri Sivanich <sivanich@sgi.com>
      3fc1f1e2
    • T
      cpu_stop: implement stop_cpu[s]() · 1142d810
      Tejun Heo 提交于
      Implement a simplistic per-cpu maximum priority cpu monopolization
      mechanism.  A non-sleeping callback can be scheduled to run on one or
      multiple cpus with maximum priority monopolozing those cpus.  This is
      primarily to replace and unify RT workqueue usage in stop_machine and
      scheduler migration_thread which currently is serving multiple
      purposes.
      
      Four functions are provided - stop_one_cpu(), stop_one_cpu_nowait(),
      stop_cpus() and try_stop_cpus().
      
      This is to allow clean sharing of resources among stop_cpu and all the
      migration thread users.  One stopper thread per cpu is created which
      is currently named "stopper/CPU".  This will eventually replace the
      migration thread and take on its name.
      
      * This facility was originally named cpuhog and lived in separate
        files but Peter Zijlstra nacked the name and thus got renamed to
        cpu_stop and moved into stop_machine.c.
      
      * Better reporting of preemption leak as per Peter's suggestion.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Dimitri Sivanich <sivanich@sgi.com>
      1142d810
  13. 05 1月, 2009 1 次提交
    • H
      stop_machine: introduce stop_machine_create/destroy. · 9ea09af3
      Heiko Carstens 提交于
      Introduce stop_machine_create/destroy. With this interface subsystems
      that need a non-failing stop_machine environment can create the
      stop_machine machine threads before actually calling stop_machine.
      When the threads aren't needed anymore they can be killed with
      stop_machine_destroy again.
      
      When stop_machine gets called and the threads aren't present they
      will be created and destroyed automatically. This restores the old
      behaviour of stop_machine.
      
      This patch also converts cpu hotplug to the new interface since it
      is special: cpu_down calls __stop_machine instead of stop_machine.
      However the kstop threads will only be created when stop_machine
      gets called.
      
      Changing the code so that the threads would be created automatically
      on __stop_machine is currently not possible: when __stop_machine gets
      called we hold cpu_add_remove_lock, which is the same lock that
      create_rt_workqueue would take. So the workqueue needs to be created
      before the cpu hotplug code locks cpu_add_remove_lock.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
      9ea09af3
  14. 01 1月, 2009 1 次提交
  15. 25 8月, 2008 1 次提交
  16. 28 7月, 2008 3 次提交
  17. 26 4月, 2006 1 次提交
  18. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4