- 04 5月, 2017 3 次提交
-
-
由 Minchan Kim 提交于
With this clean-up phase, I want to use zram's wrapper function to lock table access which is more consistent with other zram's functions. Link: http://lkml.kernel.org/r/1492052365-16169-4-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
For architecture(PAGE_SIZE > 4K), zram have supported partial IO. However, the mixed code for handling normal/partial IO is too mess, error-prone to modify IO handler functions with upcoming feature so this patch aims for cleaning up zram's IO handling functions. Link: http://lkml.kernel.org/r/1492052365-16169-3-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
Patch series "zram clean up", v2. This patchset aims to clean up zram . [1] clean up multiple pages's bvec handling. [2] clean up partial IO handling [3-6] clean up zram via using accessor and removing pointless structure. With [2-6] applied, we can get a few hundred bytes as well as huge readibility enhance. x86: 708 byte save add/remove: 1/1 grow/shrink: 0/11 up/down: 478/-1186 (-708) function old new delta zram_special_page_read - 478 +478 zram_reset_device 317 314 -3 mem_used_max_store 131 128 -3 compact_store 96 93 -3 mm_stat_show 203 197 -6 zram_add 719 712 -7 zram_slot_free_notify 229 214 -15 zram_make_request 819 803 -16 zram_meta_free 128 111 -17 zram_free_page 180 151 -29 disksize_store 432 361 -71 zram_decompress_page.isra 504 - -504 zram_bvec_rw 2592 2080 -512 Total: Before=25350773, After=25350065, chg -0.00% ppc64: 231 byte save add/remove: 2/0 grow/shrink: 1/9 up/down: 681/-912 (-231) function old new delta zram_special_page_read - 480 +480 zram_slot_lock - 200 +200 vermagic 39 40 +1 mm_stat_show 256 248 -8 zram_meta_free 200 184 -16 zram_add 944 912 -32 zram_free_page 348 308 -40 disksize_store 572 492 -80 zram_decompress_page 664 564 -100 zram_slot_free_notify 292 160 -132 zram_make_request 1132 1000 -132 zram_bvec_rw 2768 2396 -372 Total: Before=17565825, After=17565594, chg -0.00% This patch (of 6): Johannes Thumshirn reported system goes the panic when using NVMe over Fabrics loopback target with zram. The reason is zram expects each bvec in bio contains a single page but nvme can attach a huge bulk of pages attached to the bio's bvec so that zram's index arithmetic could be wrong so that out-of-bound access makes system panic. [1] in mainline solved solved the problem by limiting max_sectors with SECTORS_PER_PAGE but it makes zram slow because bio should split with each pages so this patch makes zram aware of multiple pages in a bvec so it could solve without any regression(ie, bio split). [1] 0bc31538, zram: set physical queue limits to avoid array out of bounds accesses Link: http://lkml.kernel.org/r/20170413134057.GA27499@bboxSigned-off-by: NMinchan Kim <minchan@kernel.org> Reported-by: NJohannes Thumshirn <jthumshirn@suse.de> Tested-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 4月, 2017 2 次提交
-
-
由 Minchan Kim 提交于
The copy_page is optimized memcpy for page-alinged address. If it is used with non-page aligned address, it can corrupt memory which means system corruption. With zram, it can happen with 1. 64K architecture 2. partial IO 3. slub debug Partial IO need to allocate a page and zram allocates it via kmalloc. With slub debug, kmalloc(PAGE_SIZE) doesn't return page-size aligned address. And finally, copy_page(mem, cmem) corrupts memory. So, this patch changes it to memcpy. Actuaully, we don't need to change zram_bvec_write part because zsmalloc returns page-aligned address in case of PAGE_SIZE class but it's not good to rely on the internal of zsmalloc. Note: When this patch is merged to stable, clear_page should be fixed, too. Unfortunately, recent zram removes it by "same page merge" feature so it's hard to backport this patch to -stable tree. I will handle it when I receive the mail from stable tree maintainer to merge this patch to backport. Fixes: 42e99bd9 ("zram: optimize memory operations with clear_page()/copy_page()") Link: http://lkml.kernel.org/r/1492042622-12074-2-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
In zram_rw_page, the logic to get offset is wrong by operator precedence (i.e., "<<" is higher than "&"). With wrong offset, zram can corrupt the user's data. This patch fixes it. Fixes: 8c7f0102 ("zram: implement rw_page operation of zram") Link: http://lkml.kernel.org/r/1492042622-12074-1-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 4月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Just the same as discard if the block size equals the system page size. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 09 3月, 2017 1 次提交
-
-
由 Johannes Thumshirn 提交于
zram can handle at most SECTORS_PER_PAGE sectors in a bio's bvec. When using the NVMe over Fabrics loopback target which potentially sends a huge bulk of pages attached to the bio's bvec this results in a kernel panic because of array out of bounds accesses in zram_decompress_page(). Signed-off-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NHannes Reinecke <hare@suse.com> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 25 2月, 2017 2 次提交
-
-
由 zhouxianrong 提交于
The idea is that without doing more calculations we extend zero pages to same element pages for zram. zero page is special case of same element page with zero element. 1. the test is done under android 7.0 2. startup too many applications circularly 3. sample the zero pages, same pages (none-zero element) and total pages in function page_zero_filled the result is listed as below: ZERO SAME TOTAL 36214 17842 598196 ZERO/TOTAL SAME/TOTAL (ZERO+SAME)/TOTAL ZERO/SAME AVERAGE 0.060631909 0.024990816 0.085622726 2.663825038 STDEV 0.00674612 0.005887625 0.009707034 2.115881328 MAX 0.069698422 0.030046087 0.094975336 7.56043956 MIN 0.03959586 0.007332205 0.056055193 1.928985507 from the above data, the benefit is about 2.5% and up to 3% of total swapout pages. The defect of the patch is that when we recovery a page from non-zero element the operations are low efficient for partial read. This patch extends zero_page to same_page so if there is any user to have monitored zero_pages, he will be surprised if the number is increased but it's not harmful, I believe. [minchan@kernel.org: do not free same element pages in zram_meta_free] Link: http://lkml.kernel.org/r/20170207065741.GA2567@bbox Link: http://lkml.kernel.org/r/1483692145-75357-1-git-send-email-zhouxianrong@huawei.com Link: http://lkml.kernel.org/r/1486307804-27903-1-git-send-email-minchan@kernel.orgSigned-off-by: Nzhouxianrong <zhouxianrong@huawei.com> Signed-off-by: NMinchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
zram_reset_device() waits for ongoing writepage pages to be completed by zram->refcount logic. However, it's pointless because before the reset, we prevent further opening of zram by zram->claim and flush all of pending IO by fsync_bdev so there should be no pending IO at the zram_reset_device(). So let's remove that code which is even broken due to the lack of wake_up elsewhere. Link: http://lkml.kernel.org/r/1485145031-11661-1-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 2月, 2017 1 次提交
-
-
由 Sergey Senozhatsky 提交于
We had a deprecated_attr_warn() warning for 2 years and now the time has come and we finally can do the cleanup. The plan was as follows: : per-stat sysfs attributes are considered to be deprecated. : The basic strategy is: : -- the existing RW nodes will be downgraded to WO nodes (in linux 4.11) : -- deprecated RO sysfs nodes will eventually be removed (in linux 4.11) : : The list of deprecated attributes can be found here: : Documentation/ABI/obsolete/sysfs-block-zram : : Basically, every attribute that has its own read accessible sysfs : node (e.g. num_reads) *AND* is accessible via one of the stat files : (zram<id>/stat or zram<id>/io_stat or zram<id>/mm_stat) is considered : to be deprecated. The patch also removes `obsolete/sysfs-block-zram', clean ups `testing/sysfs-block-zram' and tweaks zram.txt files. Link: http://lkml.kernel.org/r/20170118035838.11090-1-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 2月, 2017 1 次提交
-
-
由 Jens Axboe 提交于
A previous commit made the bdi embedded in the request queue a pointer, but neglected to fixup zram. Fix it up. Fixes: dc3b17cc ("block: Use pointer to backing_dev_info from request_queue") Reported-by: NBart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 11 1月, 2017 2 次提交
-
-
由 Minchan Kim 提交于
zram has used per-cpu stream feature from v4.7. It aims for increasing cache hit ratio of scratch buffer for compressing. Downside of that approach is that zram should ask memory space for compressed page in per-cpu context which requires stricted gfp flag which could be failed. If so, it retries to allocate memory space out of per-cpu context so it could get memory this time and compress the data again, copies it to the memory space. In this scenario, zram assumes the data should never be changed but it is not true without stable page support. So, If the data is changed under us, zram can make buffer overrun so that zsmalloc free object chain is broken so system goes crash like below https://bugzilla.suse.com/show_bug.cgi?id=997574 This patch adds BDI_CAP_STABLE_WRITES to zram for declaring "I am block device needing *stable write*". Fixes: da9556a2 ("zram: user per-cpu compression streams") Link: http://lkml.kernel.org/r/1482366980-3782-4-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Hyeoncheol Lee <cheol.lee@lge.com> Cc: <yjay.kim@lge.com> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
Commit b4c5c609 ("zram: avoid lockdep splat by revalidate_disk") moved revalidate_disk call out of init_lock to avoid lockdep false-positive splat. However, commit 08eee69f ("zram: remove init_lock in zram_make_request") removed init_lock in IO path so there is no worry about lockdep splat. So, let's restore it. This patch is needed to set BDI_CAP_STABLE_WRITES atomically in next patch. Fixes: da9556a2 ("zram: user per-cpu compression streams") Link: http://lkml.kernel.org/r/1482366980-3782-3-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Hyeoncheol Lee <cheol.lee@lge.com> Cc: <yjay.kim@lge.com> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 12月, 2016 1 次提交
-
-
由 Sergey Senozhatsky 提交于
zram hot_add sysfs attribute is a very 'special' attribute - reading from it creates a new uninitialized zram device. This file, by a mistake, can be read by a 'normal' user at the moment, while only root must be able to create a new zram device, therefore hot_add attribute must have S_IRUSR mode, not S_IRUGO. [akpm@linux-foundation.org: s/sence/sense/, reflow comment to use 80 cols] Fixes: 6566d1a3 ("zram: add dynamic device add/remove functionality") Link: http://lkml.kernel.org/r/20161205155845.20129-1-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: NSteven Allen <steven@stebalien.com> Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 12月, 2016 1 次提交
-
-
由 Anna-Maria Gleixner 提交于
Install the callbacks via the state machine with multi instance support and let the core invoke the callbacks on the already online CPUs. [bigeasy: wire up the multi instance stuff] Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: rt@linutronix.de Cc: Nitin Gupta <ngupta@vflare.org> Link: http://lkml.kernel.org/r/20161126231350.10321-19-bigeasy@linutronix.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 01 12月, 2016 1 次提交
-
-
由 Takashi Iwai 提交于
The zram hot removal code calls idr_remove() even when zram_remove() returns an error (typically -EBUSY). This results in a leftover at the device release, eventually leading to a crash when the module is reloaded. As described in the bug report below, the following procedure would cause an Oops with zram: - provision three zram devices via modprobe zram num_devices=3 - configure a size for each device + echo "1G" > /sys/block/$zram_name/disksize - mkfs and mount zram0 only - attempt to hot remove all three devices + echo 2 > /sys/class/zram-control/hot_remove + echo 1 > /sys/class/zram-control/hot_remove + echo 0 > /sys/class/zram-control/hot_remove - zram0 removal fails with EBUSY, as expected - unmount zram0 - try zram0 hot remove again + echo 0 > /sys/class/zram-control/hot_remove - fails with ENODEV (unexpected) - unload zram kernel module + completes successfully - zram0 device node still exists - attempt to mount /dev/zram0 + mount command is killed + following BUG is encountered BUG: unable to handle kernel paging request at ffffffffa0002ba0 IP: get_disk+0x16/0x50 Oops: 0000 [#1] SMP CPU: 0 PID: 252 Comm: mount Not tainted 4.9.0-rc6 #176 Call Trace: exact_lock+0xc/0x20 kobj_lookup+0xdc/0x160 get_gendisk+0x2f/0x110 __blkdev_get+0x10c/0x3c0 blkdev_get+0x19d/0x2e0 blkdev_open+0x56/0x70 do_dentry_open.isra.19+0x1ff/0x310 vfs_open+0x43/0x60 path_openat+0x2c9/0xf30 do_filp_open+0x79/0xd0 do_sys_open+0x114/0x1e0 SyS_open+0x19/0x20 entry_SYSCALL_64_fastpath+0x13/0x94 This patch adds the proper error check in hot_remove_store() not to call idr_remove() unconditionally. Fixes: 17ec4cd9 ("zram: don't call idr_remove() from zram_remove()") Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1010970 Link: http://lkml.kernel.org/r/20161121132140.12683-1-tiwai@suse.deSigned-off-by: NTakashi Iwai <tiwai@suse.de> Reviewed-by: NDavid Disseldorp <ddiss@suse.de> Reported-by: NDavid Disseldorp <ddiss@suse.de> Tested-by: NDavid Disseldorp <ddiss@suse.de> Acked-by: NMinchan Kim <minchan@kernel.org> Acked-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 8月, 2016 1 次提交
-
-
由 Jens Axboe 提交于
Commit abf54548 changed it from an 'rw' flags type to the newer ops based interface, but now we're effectively leaking some bdev internals to the rest of the kernel. Since we only care about whether it's a read or a write at that level, just pass in a bool 'is_write' parameter instead. Then we can also move op_is_write() and friends back under CONFIG_BLOCK protection. Reviewed-by: NMike Christie <mchristi@redhat.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 05 8月, 2016 1 次提交
-
-
由 Mike Christie 提交于
The rw_page users were not converted to use bio/req ops. As a result bdev_write_page is not passing down REQ_OP_WRITE and the IOs will be sent down as reads. Signed-off-by: NMike Christie <mchristi@redhat.com> Fixes: 4e1b2d52 ("block, fs, drivers: remove REQ_OP compat defs and related code") Modified by me to: 1) Drop op_flags passing into ->rw_page(), as we don't use it. 2) Make op_is_write() and friends safe to use for !CONFIG_BLOCK Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 27 7月, 2016 4 次提交
-
-
由 Minchan Kim 提交于
Zsmalloc is ready for page migration so zram can use __GFP_MOVABLE from now on. I did test to see how it helps to make higher order pages. Test scenario is as follows. KVM guest, 1G memory, ext4 formated zram block device, for i in `seq 1 8`; do dd if=/dev/vda1 of=mnt/test$i.txt bs=128M count=1 & done wait `pidof dd` for i in `seq 1 2 8`; do rm -rf mnt/test$i.txt done fstrim -v mnt echo "init" cat /proc/buddyinfo echo "compaction" echo 1 > /proc/sys/vm/compact_memory cat /proc/buddyinfo old: init Node 0, zone DMA 208 120 51 41 11 0 0 0 0 0 0 Node 0, zone DMA32 16380 13777 9184 3805 789 54 3 0 0 0 0 compaction Node 0, zone DMA 132 82 40 39 16 2 1 0 0 0 0 Node 0, zone DMA32 5219 5526 4969 3455 1831 677 139 15 0 0 0 new: init Node 0, zone DMA 379 115 97 19 2 0 0 0 0 0 0 Node 0, zone DMA32 18891 16774 10862 3947 637 21 0 0 0 0 0 compaction Node 0, zone DMA 214 66 87 29 10 3 0 0 0 0 0 Node 0, zone DMA32 1612 3139 3154 2469 1745 990 384 94 7 0 0 As you can see, compaction made so many high-order pages. Yay! Link: http://lkml.kernel.org/r/1464736881-24886-13-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
There is no way to get a string with all the crypto comp algorithms supported by the crypto comp engine, so we need to maintain our own backends list. At the same time we additionally need to use crypto_has_comp() to make sure that the user has requested a compression algorithm that is recognized by the crypto comp engine. Relying on /proc/crypto is not an options here, because it does not show not-yet-inserted compression modules. Example: modprobe zram cat /proc/crypto | grep -i lz4 modprobe lz4 cat /proc/crypto | grep -i lz4 name : lz4 driver : lz4-generic module : lz4 So the user can't tell exactly if the lz4 is really supported from /proc/crypto output, unless someone or something has loaded it. This patch also adds crypto_has_comp() to zcomp_available_show(). We store all the compression algorithms names in zcomp's `backends' array, regardless the CONFIG_CRYPTO_FOO configuration, but show only those that are also supported by crypto engine. This helps user to know the exact list of compression algorithms that can be used. Example: module lz4 is not loaded yet, but is supported by the crypto engine. /proc/crypto has no information on this module, while zram's `comp_algorithm' lists it: cat /proc/crypto | grep -i lz4 cat /sys/block/zram0/comp_algorithm [lzo] lz4 deflate lz4hc 842 We still use the `backends' array to determine if the requested compression backend is known to crypto api. This array, however, may not contain some entries, therefore as the last step we call crypto_has_comp() function which attempts to insmod the requested compression algorithm to determine if crypto api supports it. The advantage of this method is that now we permit the usage of out-of-tree crypto compression modules (implementing S/W or H/W compression). [sergey.senozhatsky@gmail.com: zram-use-crypto-api-to-check-alg-availability-v3] Link: http://lkml.kernel.org/r/20160604024902.11778-4-sergey.senozhatsky@gmail.com Link: http://lkml.kernel.org/r/20160531122017.2878-5-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
We don't have an idle zstreams list anymore and our write path now works absolutely differently, preventing preemption during compression. This removes possibilities of read paths preempting writes at wrong places (which could badly affect the performance of both paths) and at the same time opens the door for a move from custom LZO/LZ4 compression backends implementation to a more generic one, using crypto compress API. Joonsoo Kim [1] attempted to do this a while ago, but faced with the need of introducing a new crypto API interface. The root cause was the fact that crypto API compression algorithms require a compression stream structure (in zram terminology) for both compression and decompression ops, while in reality only several of compression algorithms really need it. This resulted in a concept of context-less crypto API compression backends [2]. Both write and read paths, though, would have been executed with the preemption enabled, which in the worst case could have resulted in a decreased worst-case performance, e.g. consider the following case: CPU0 zram_write() spin_lock() take the last idle stream spin_unlock() << preempted >> zram_read() spin_lock() no idle streams spin_unlock() schedule() resuming zram_write compression() but it took me some time to realize that, and it took even longer to evolve zram and to make it ready for crypto API. The key turned out to be -- drop the idle streams list entirely. Without the idle streams list we are free to use compression algorithms that require compression stream for decompression (read), because streams are now placed in per-cpu data and each write path has to disable preemption for compression op, almost completely eliminating the aforementioned case (technically, we still have a small chance, because write path has a fast and a slow paths and the slow path is executed with the preemption enabled; but the frequency of failed fast path is too low). TEST ==== - 4 CPUs, x86_64 system - 3G zram, lzo - fio tests: read, randread, write, randwrite, rw, randrw test script [3] command: ZRAM_SIZE=3G LOG_SUFFIX=XXXX FIO_LOOPS=5 ./zram-fio-test.sh BASE PATCHED jobs1 READ: 2527.2MB/s 2482.7MB/s READ: 2102.7MB/s 2045.0MB/s WRITE: 1284.3MB/s 1324.3MB/s WRITE: 1080.7MB/s 1101.9MB/s READ: 430125KB/s 437498KB/s WRITE: 430538KB/s 437919KB/s READ: 399593KB/s 403987KB/s WRITE: 399910KB/s 404308KB/s jobs2 READ: 8133.5MB/s 7854.8MB/s READ: 7086.6MB/s 6912.8MB/s WRITE: 3177.2MB/s 3298.3MB/s WRITE: 2810.2MB/s 2871.4MB/s READ: 1017.6MB/s 1023.4MB/s WRITE: 1018.2MB/s 1023.1MB/s READ: 977836KB/s 984205KB/s WRITE: 979435KB/s 985814KB/s jobs3 READ: 13557MB/s 13391MB/s READ: 11876MB/s 11752MB/s WRITE: 4641.5MB/s 4682.1MB/s WRITE: 4164.9MB/s 4179.3MB/s READ: 1453.8MB/s 1455.1MB/s WRITE: 1455.1MB/s 1458.2MB/s READ: 1387.7MB/s 1395.7MB/s WRITE: 1386.1MB/s 1394.9MB/s jobs4 READ: 20271MB/s 20078MB/s READ: 18033MB/s 17928MB/s WRITE: 6176.8MB/s 6180.5MB/s WRITE: 5686.3MB/s 5705.3MB/s READ: 2009.4MB/s 2006.7MB/s WRITE: 2007.5MB/s 2004.9MB/s READ: 1929.7MB/s 1935.6MB/s WRITE: 1926.8MB/s 1932.6MB/s jobs5 READ: 18823MB/s 19024MB/s READ: 18968MB/s 19071MB/s WRITE: 6191.6MB/s 6372.1MB/s WRITE: 5818.7MB/s 5787.1MB/s READ: 2011.7MB/s 1981.3MB/s WRITE: 2011.4MB/s 1980.1MB/s READ: 1949.3MB/s 1935.7MB/s WRITE: 1940.4MB/s 1926.1MB/s jobs6 READ: 21870MB/s 21715MB/s READ: 19957MB/s 19879MB/s WRITE: 6528.4MB/s 6537.6MB/s WRITE: 6098.9MB/s 6073.6MB/s READ: 2048.6MB/s 2049.9MB/s WRITE: 2041.7MB/s 2042.9MB/s READ: 2013.4MB/s 1990.4MB/s WRITE: 2009.4MB/s 1986.5MB/s jobs7 READ: 21359MB/s 21124MB/s READ: 19746MB/s 19293MB/s WRITE: 6660.4MB/s 6518.8MB/s WRITE: 6211.6MB/s 6193.1MB/s READ: 2089.7MB/s 2080.6MB/s WRITE: 2085.8MB/s 2076.5MB/s READ: 2041.2MB/s 2052.5MB/s WRITE: 2037.5MB/s 2048.8MB/s jobs8 READ: 20477MB/s 19974MB/s READ: 18922MB/s 18576MB/s WRITE: 6851.9MB/s 6788.3MB/s WRITE: 6407.7MB/s 6347.5MB/s READ: 2134.8MB/s 2136.1MB/s WRITE: 2132.8MB/s 2134.4MB/s READ: 2074.2MB/s 2069.6MB/s WRITE: 2087.3MB/s 2082.4MB/s jobs9 READ: 19797MB/s 19994MB/s READ: 18806MB/s 18581MB/s WRITE: 6878.7MB/s 6822.7MB/s WRITE: 6456.8MB/s 6447.2MB/s READ: 2141.1MB/s 2154.7MB/s WRITE: 2144.4MB/s 2157.3MB/s READ: 2084.1MB/s 2085.1MB/s WRITE: 2091.5MB/s 2092.5MB/s jobs10 READ: 19794MB/s 19784MB/s READ: 18794MB/s 18745MB/s WRITE: 6984.4MB/s 6676.3MB/s WRITE: 6532.3MB/s 6342.7MB/s READ: 2150.6MB/s 2155.4MB/s WRITE: 2156.8MB/s 2161.5MB/s READ: 2106.4MB/s 2095.6MB/s WRITE: 2109.7MB/s 2098.4MB/s BASE PATCHED jobs1 perfstat stalled-cycles-frontend 102,480,595,419 ( 41.53%) 114,508,864,804 ( 46.92%) stalled-cycles-backend 51,941,417,832 ( 21.05%) 46,836,112,388 ( 19.19%) instructions 283,612,054,215 ( 1.15) 283,918,134,959 ( 1.16) branches 56,372,560,385 ( 724.923) 56,449,814,753 ( 733.766) branch-misses 374,826,000 ( 0.66%) 326,935,859 ( 0.58%) jobs2 perfstat stalled-cycles-frontend 155,142,745,777 ( 40.99%) 164,170,979,198 ( 43.82%) stalled-cycles-backend 70,813,866,387 ( 18.71%) 66,456,858,165 ( 17.74%) instructions 463,436,648,173 ( 1.22) 464,221,890,191 ( 1.24) branches 91,088,733,902 ( 760.088) 91,278,144,546 ( 769.133) branch-misses 504,460,363 ( 0.55%) 394,033,842 ( 0.43%) jobs3 perfstat stalled-cycles-frontend 201,300,397,212 ( 39.84%) 223,969,902,257 ( 44.44%) stalled-cycles-backend 87,712,593,974 ( 17.36%) 81,618,888,712 ( 16.19%) instructions 642,869,545,023 ( 1.27) 644,677,354,132 ( 1.28) branches 125,724,560,594 ( 690.682) 126,133,159,521 ( 694.542) branch-misses 527,941,798 ( 0.42%) 444,782,220 ( 0.35%) jobs4 perfstat stalled-cycles-frontend 246,701,197,429 ( 38.12%) 280,076,030,886 ( 43.29%) stalled-cycles-backend 119,050,341,112 ( 18.40%) 110,955,641,671 ( 17.15%) instructions 822,716,962,127 ( 1.27) 825,536,969,320 ( 1.28) branches 160,590,028,545 ( 688.614) 161,152,996,915 ( 691.068) branch-misses 650,295,287 ( 0.40%) 550,229,113 ( 0.34%) jobs5 perfstat stalled-cycles-frontend 298,958,462,516 ( 38.30%) 344,852,200,358 ( 44.16%) stalled-cycles-backend 137,558,742,122 ( 17.62%) 129,465,067,102 ( 16.58%) instructions 1,005,714,688,752 ( 1.29) 1,007,657,999,432 ( 1.29) branches 195,988,773,962 ( 697.730) 196,446,873,984 ( 700.319) branch-misses 695,818,940 ( 0.36%) 624,823,263 ( 0.32%) jobs6 perfstat stalled-cycles-frontend 334,497,602,856 ( 36.71%) 387,590,419,779 ( 42.38%) stalled-cycles-backend 163,539,365,335 ( 17.95%) 152,640,193,639 ( 16.69%) instructions 1,184,738,177,851 ( 1.30) 1,187,396,281,677 ( 1.30) branches 230,592,915,640 ( 702.902) 231,253,802,882 ( 702.356) branch-misses 747,934,786 ( 0.32%) 643,902,424 ( 0.28%) jobs7 perfstat stalled-cycles-frontend 396,724,684,187 ( 37.71%) 460,705,858,952 ( 43.84%) stalled-cycles-backend 188,096,616,496 ( 17.88%) 175,785,787,036 ( 16.73%) instructions 1,364,041,136,608 ( 1.30) 1,366,689,075,112 ( 1.30) branches 265,253,096,936 ( 700.078) 265,890,524,883 ( 702.839) branch-misses 784,991,589 ( 0.30%) 729,196,689 ( 0.27%) jobs8 perfstat stalled-cycles-frontend 440,248,299,870 ( 36.92%) 509,554,793,816 ( 42.46%) stalled-cycles-backend 222,575,930,616 ( 18.67%) 213,401,248,432 ( 17.78%) instructions 1,542,262,045,114 ( 1.29) 1,545,233,932,257 ( 1.29) branches 299,775,178,439 ( 697.666) 300,528,458,505 ( 694.769) branch-misses 847,496,084 ( 0.28%) 748,794,308 ( 0.25%) jobs9 perfstat stalled-cycles-frontend 506,269,882,480 ( 37.86%) 592,798,032,820 ( 44.43%) stalled-cycles-backend 253,192,498,861 ( 18.93%) 233,727,666,185 ( 17.52%) instructions 1,721,985,080,913 ( 1.29) 1,724,666,236,005 ( 1.29) branches 334,517,360,255 ( 694.134) 335,199,758,164 ( 697.131) branch-misses 873,496,730 ( 0.26%) 815,379,236 ( 0.24%) jobs10 perfstat stalled-cycles-frontend 549,063,363,749 ( 37.18%) 651,302,376,662 ( 43.61%) stalled-cycles-backend 281,680,986,810 ( 19.07%) 277,005,235,582 ( 18.55%) instructions 1,901,859,271,180 ( 1.29) 1,906,311,064,230 ( 1.28) branches 369,398,536,153 ( 694.004) 370,527,696,358 ( 688.409) branch-misses 967,929,335 ( 0.26%) 890,125,056 ( 0.24%) BASE PATCHED seconds elapsed 79.421641008 78.735285546 seconds elapsed 61.471246133 60.869085949 seconds elapsed 62.317058173 62.224188495 seconds elapsed 60.030739363 60.081102518 seconds elapsed 74.070398362 74.317582865 seconds elapsed 84.985953007 85.414364176 seconds elapsed 97.724553255 98.173311344 seconds elapsed 109.488066758 110.268399318 seconds elapsed 122.768189405 122.967164498 seconds elapsed 135.130035105 136.934770801 On my other system (8 x86_64 CPUs, short version of test results): BASE PATCHED seconds elapsed 19.518065994 19.806320662 seconds elapsed 15.172772749 15.594718291 seconds elapsed 13.820925970 13.821708564 seconds elapsed 13.293097816 14.585206405 seconds elapsed 16.207284118 16.064431606 seconds elapsed 17.958376158 17.771825767 seconds elapsed 19.478009164 19.602961508 seconds elapsed 21.347152811 21.352318709 seconds elapsed 24.478121126 24.171088735 seconds elapsed 26.865057442 26.767327618 So performance-wise the numbers are quite similar. Also update zcomp interface to be more aligned with the crypto API. [1] http://marc.info/?l=linux-kernel&m=144480832108927&w=2 [2] http://marc.info/?l=linux-kernel&m=145379613507518&w=2 [3] https://github.com/sergey-senozhatsky/zram-perf-test Link: http://lkml.kernel.org/r/20160531122017.2878-3-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Suggested-by: NMinchan Kim <minchan@kernel.org> Suggested-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
This has started as a 'add zlib support' work, but after some thinking I saw no blockers for a bigger change -- a switch to crypto API. We don't have an idle zstreams list anymore and our write path now works absolutely differently, preventing preemption during compression. This removes possibilities of read paths preempting writes at wrong places and opens the door for a move from custom LZO/LZ4 compression backends implementation to a more generic one, using crypto compress API. This patch set also eliminates the need of a new context-less crypto API interface, which was quite hard to sell, so we can move along faster. benchmarks: (x86_64, 4GB, zram-perf script) perf reported run-time fio (max jobs=3). I performed fio test with the increasing number of parallel jobs (max to 3) on a 3G zram device, using `static' data and the following crypto comp algorithms: 842, deflate, lz4, lz4hc, lzo the output was: - test running time (which can tell us what algorithms performs faster) and - zram mm_stat (which tells the compressed memory size, max used memory, etc). It's just for information. for example, LZ4HC has twice the running time of LZO, but the compressed memory size is: 23592960 vs 34603008 bytes. test-fio-zram-842 197.907655282 seconds time elapsed 201.623142884 seconds time elapsed 226.854291345 seconds time elapsed test-fio-zram-DEFLATE 253.259516155 seconds time elapsed 258.148563401 seconds time elapsed 290.251909365 seconds time elapsed test-fio-zram-LZ4 27.022598717 seconds time elapsed 29.580522717 seconds time elapsed 33.293463430 seconds time elapsed test-fio-zram-LZ4HC 56.393954615 seconds time elapsed 74.904659747 seconds time elapsed 101.940998564 seconds time elapsed test-fio-zram-LZO 28.155948075 seconds time elapsed 30.390036330 seconds time elapsed 34.455773159 seconds time elapsed zram mm_stat-s (max fio jobs=3) test-fio-zram-842 mm_stat (jobs1): 3221225472 673185792 690266112 0 690266112 0 0 mm_stat (jobs2): 3221225472 673185792 690266112 0 690266112 0 0 mm_stat (jobs3): 3221225472 673185792 690266112 0 690266112 0 0 test-fio-zram-DEFLATE mm_stat (jobs1): 3221225472 24379392 37761024 0 37761024 0 0 mm_stat (jobs2): 3221225472 24379392 37761024 0 37761024 0 0 mm_stat (jobs3): 3221225472 24379392 37761024 0 37761024 0 0 test-fio-zram-LZ4 mm_stat (jobs1): 3221225472 23592960 37761024 0 37761024 0 0 mm_stat (jobs2): 3221225472 23592960 37761024 0 37761024 0 0 mm_stat (jobs3): 3221225472 23592960 37761024 0 37761024 0 0 test-fio-zram-LZ4HC mm_stat (jobs1): 3221225472 23592960 37761024 0 37761024 0 0 mm_stat (jobs2): 3221225472 23592960 37761024 0 37761024 0 0 mm_stat (jobs3): 3221225472 23592960 37761024 0 37761024 0 0 test-fio-zram-LZO mm_stat (jobs1): 3221225472 34603008 50335744 0 50335744 0 0 mm_stat (jobs2): 3221225472 34603008 50335744 0 50335744 0 0 mm_stat (jobs3): 3221225472 34603008 50335744 0 50339840 0 0 This patch (of 8): We don't perform any zstream idle list lookup anymore, so zcomp_strm_find()/zcomp_strm_release() names are not representative. Rename to zcomp_stream_get()/zcomp_stream_put(). Link: http://lkml.kernel.org/r/20160531122017.2878-2-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 6月, 2016 1 次提交
-
-
由 Mike Christie 提交于
This patch converts the simple bi_rw use cases in the block, drivers, mm and fs code to set/get the bio operation using bio_set_op_attrs/bio_op These should be simple one or two liner cases, so I just did them in one patch. The next patches handle the more complicated cases in a module per patch. Signed-off-by: NMike Christie <mchristi@redhat.com> Reviewed-by: NHannes Reinecke <hare@suse.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 21 5月, 2016 4 次提交
-
-
由 Sergey Senozhatsky 提交于
debug_stat sysfs is read-only and represents various debugging data that zram developers may need. This file is not meant to be used by anyone else: its content is not documented and will change any time w/o any notice. Therefore, the output of debug_stat file contains a version string. To avoid any confusion, we will increase the version number every time we modify the output. At the moment this file exports only one value -- the number of re-compressions, IOW, the number of times compression fast path has failed. This stat is temporary any will be useful in case if any per-cpu compression streams regressions will be reported. Link: http://lkml.kernel.org/r/20160513230834.GB26763@bbox Link: http://lkml.kernel.org/r/20160511134553.12655-1-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
Remove the internal part of max_comp_streams interface, since we switched to per-cpu streams. We will keep RW max_comp_streams attr around, because: a) we may (silently) switch back to idle compression streams list and don't want to disturb user space b) max_comp_streams attr must wait for the next 'lay off cycle'; we give user space 2 years to adjust before we remove/downgrade the attr, and there are already several attrs scheduled for removal in 4.11, so it's too late for max_comp_streams. This slightly change a user visible behaviour: - First, reading from max_comp_stream file now will always return the number of online CPUs. - Second, writing to max_comp_stream will not take any effect. Link: http://lkml.kernel.org/r/20160503165546.25201-1-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
Remove idle streams list and keep compression streams in per-cpu data. This removes two contented spin_lock()/spin_unlock() calls from write path and also prevent write OP from being preempted while holding the compression stream, which can cause slow downs. For instance, let's assume that we have N cpus and N-2 max_comp_streams.TASK1 owns the last idle stream, TASK2-TASK3 come in with the write requests: TASK1 TASK2 TASK3 zram_bvec_write() spin_lock find stream spin_unlock compress <<preempted>> zram_bvec_write() spin_lock find stream spin_unlock no_stream schedule zram_bvec_write() spin_lock find_stream spin_unlock no_stream schedule spin_lock release stream spin_unlock wake up TASK2 not only TASK2 and TASK3 will not get the stream, TASK1 will be preempted in the middle of its operation; while we would prefer it to finish compression and release the stream. Test environment: x86_64, 4 CPU box, 3G zram, lzo The following fio tests were executed: read, randread, write, randwrite, rw, randrw with the increasing number of jobs from 1 to 10. 4 streams 8 streams per-cpu =========================================================== jobs1 READ: 2520.1MB/s 2566.5MB/s 2491.5MB/s READ: 2102.7MB/s 2104.2MB/s 2091.3MB/s WRITE: 1355.1MB/s 1320.2MB/s 1378.9MB/s WRITE: 1103.5MB/s 1097.2MB/s 1122.5MB/s READ: 434013KB/s 435153KB/s 439961KB/s WRITE: 433969KB/s 435109KB/s 439917KB/s READ: 403166KB/s 405139KB/s 403373KB/s WRITE: 403223KB/s 405197KB/s 403430KB/s jobs2 READ: 7958.6MB/s 8105.6MB/s 8073.7MB/s READ: 6864.9MB/s 6989.8MB/s 7021.8MB/s WRITE: 2438.1MB/s 2346.9MB/s 3400.2MB/s WRITE: 1994.2MB/s 1990.3MB/s 2941.2MB/s READ: 981504KB/s 973906KB/s 1018.8MB/s WRITE: 981659KB/s 974060KB/s 1018.1MB/s READ: 937021KB/s 938976KB/s 987250KB/s WRITE: 934878KB/s 936830KB/s 984993KB/s jobs3 READ: 13280MB/s 13553MB/s 13553MB/s READ: 11534MB/s 11785MB/s 11755MB/s WRITE: 3456.9MB/s 3469.9MB/s 4810.3MB/s WRITE: 3029.6MB/s 3031.6MB/s 4264.8MB/s READ: 1363.8MB/s 1362.6MB/s 1448.9MB/s WRITE: 1361.9MB/s 1360.7MB/s 1446.9MB/s READ: 1309.4MB/s 1310.6MB/s 1397.5MB/s WRITE: 1307.4MB/s 1308.5MB/s 1395.3MB/s jobs4 READ: 20244MB/s 20177MB/s 20344MB/s READ: 17886MB/s 17913MB/s 17835MB/s WRITE: 4071.6MB/s 4046.1MB/s 6370.2MB/s WRITE: 3608.9MB/s 3576.3MB/s 5785.4MB/s READ: 1824.3MB/s 1821.6MB/s 1997.5MB/s WRITE: 1819.8MB/s 1817.4MB/s 1992.5MB/s READ: 1765.7MB/s 1768.3MB/s 1937.3MB/s WRITE: 1767.5MB/s 1769.1MB/s 1939.2MB/s jobs5 READ: 18663MB/s 18986MB/s 18823MB/s READ: 16659MB/s 16605MB/s 16954MB/s WRITE: 3912.4MB/s 3888.7MB/s 6126.9MB/s WRITE: 3506.4MB/s 3442.5MB/s 5519.3MB/s READ: 1798.2MB/s 1746.5MB/s 1935.8MB/s WRITE: 1792.7MB/s 1740.7MB/s 1929.1MB/s READ: 1727.6MB/s 1658.2MB/s 1917.3MB/s WRITE: 1726.5MB/s 1657.2MB/s 1916.6MB/s jobs6 READ: 21017MB/s 20922MB/s 21162MB/s READ: 19022MB/s 19140MB/s 18770MB/s WRITE: 3968.2MB/s 4037.7MB/s 6620.8MB/s WRITE: 3643.5MB/s 3590.2MB/s 6027.5MB/s READ: 1871.8MB/s 1880.5MB/s 2049.9MB/s WRITE: 1867.8MB/s 1877.2MB/s 2046.2MB/s READ: 1755.8MB/s 1710.3MB/s 1964.7MB/s WRITE: 1750.5MB/s 1705.9MB/s 1958.8MB/s jobs7 READ: 21103MB/s 20677MB/s 21482MB/s READ: 18522MB/s 18379MB/s 19443MB/s WRITE: 4022.5MB/s 4067.4MB/s 6755.9MB/s WRITE: 3691.7MB/s 3695.5MB/s 5925.6MB/s READ: 1841.5MB/s 1933.9MB/s 2090.5MB/s WRITE: 1842.7MB/s 1935.3MB/s 2091.9MB/s READ: 1832.4MB/s 1856.4MB/s 1971.5MB/s WRITE: 1822.3MB/s 1846.2MB/s 1960.6MB/s jobs8 READ: 20463MB/s 20194MB/s 20862MB/s READ: 18178MB/s 17978MB/s 18299MB/s WRITE: 4085.9MB/s 4060.2MB/s 7023.8MB/s WRITE: 3776.3MB/s 3737.9MB/s 6278.2MB/s READ: 1957.6MB/s 1944.4MB/s 2109.5MB/s WRITE: 1959.2MB/s 1946.2MB/s 2111.4MB/s READ: 1900.6MB/s 1885.7MB/s 2082.1MB/s WRITE: 1896.2MB/s 1881.4MB/s 2078.3MB/s jobs9 READ: 19692MB/s 19734MB/s 19334MB/s READ: 17678MB/s 18249MB/s 17666MB/s WRITE: 4004.7MB/s 4064.8MB/s 6990.7MB/s WRITE: 3724.7MB/s 3772.1MB/s 6193.6MB/s READ: 1953.7MB/s 1967.3MB/s 2105.6MB/s WRITE: 1953.4MB/s 1966.7MB/s 2104.1MB/s READ: 1860.4MB/s 1897.4MB/s 2068.5MB/s WRITE: 1858.9MB/s 1895.9MB/s 2066.8MB/s jobs10 READ: 19730MB/s 19579MB/s 19492MB/s READ: 18028MB/s 18018MB/s 18221MB/s WRITE: 4027.3MB/s 4090.6MB/s 7020.1MB/s WRITE: 3810.5MB/s 3846.8MB/s 6426.8MB/s READ: 1956.1MB/s 1994.6MB/s 2145.2MB/s WRITE: 1955.9MB/s 1993.5MB/s 2144.8MB/s READ: 1852.8MB/s 1911.6MB/s 2075.8MB/s WRITE: 1855.7MB/s 1914.6MB/s 2078.1MB/s perf stat 4 streams 8 streams per-cpu ==================================================================================================================== jobs1 stalled-cycles-frontend 23,174,811,209 ( 38.21%) 23,220,254,188 ( 38.25%) 23,061,406,918 ( 38.34%) stalled-cycles-backend 11,514,174,638 ( 18.98%) 11,696,722,657 ( 19.27%) 11,370,852,810 ( 18.90%) instructions 73,925,005,782 ( 1.22) 73,903,177,632 ( 1.22) 73,507,201,037 ( 1.22) branches 14,455,124,835 ( 756.063) 14,455,184,779 ( 755.281) 14,378,599,509 ( 758.546) branch-misses 69,801,336 ( 0.48%) 80,225,529 ( 0.55%) 72,044,726 ( 0.50%) jobs2 stalled-cycles-frontend 49,912,741,782 ( 46.11%) 50,101,189,290 ( 45.95%) 32,874,195,633 ( 35.11%) stalled-cycles-backend 27,080,366,230 ( 25.02%) 27,949,970,232 ( 25.63%) 16,461,222,706 ( 17.58%) instructions 122,831,629,690 ( 1.13) 122,919,846,419 ( 1.13) 121,924,786,775 ( 1.30) branches 23,725,889,239 ( 692.663) 23,733,547,140 ( 688.062) 23,553,950,311 ( 794.794) branch-misses 90,733,041 ( 0.38%) 96,320,895 ( 0.41%) 84,561,092 ( 0.36%) jobs3 stalled-cycles-frontend 66,437,834,608 ( 45.58%) 63,534,923,344 ( 43.69%) 42,101,478,505 ( 33.19%) stalled-cycles-backend 34,940,799,661 ( 23.97%) 34,774,043,148 ( 23.91%) 21,163,324,388 ( 16.68%) instructions 171,692,121,862 ( 1.18) 171,775,373,044 ( 1.18) 170,353,542,261 ( 1.34) branches 32,968,962,622 ( 628.723) 32,987,739,894 ( 630.512) 32,729,463,918 ( 717.027) branch-misses 111,522,732 ( 0.34%) 110,472,894 ( 0.33%) 99,791,291 ( 0.30%) jobs4 stalled-cycles-frontend 98,741,701,675 ( 49.72%) 94,797,349,965 ( 47.59%) 54,535,655,381 ( 33.53%) stalled-cycles-backend 54,642,609,615 ( 27.51%) 55,233,554,408 ( 27.73%) 27,882,323,541 ( 17.14%) instructions 220,884,807,851 ( 1.11) 220,930,887,273 ( 1.11) 218,926,845,851 ( 1.35) branches 42,354,518,180 ( 592.105) 42,362,770,587 ( 590.452) 41,955,552,870 ( 716.154) branch-misses 138,093,449 ( 0.33%) 131,295,286 ( 0.31%) 121,794,771 ( 0.29%) jobs5 stalled-cycles-frontend 116,219,747,212 ( 48.14%) 110,310,397,012 ( 46.29%) 66,373,082,723 ( 33.70%) stalled-cycles-backend 66,325,434,776 ( 27.48%) 64,157,087,914 ( 26.92%) 32,999,097,299 ( 16.76%) instructions 270,615,008,466 ( 1.12) 270,546,409,525 ( 1.14) 268,439,910,948 ( 1.36) branches 51,834,046,557 ( 599.108) 51,811,867,722 ( 608.883) 51,412,576,077 ( 729.213) branch-misses 158,197,086 ( 0.31%) 142,639,805 ( 0.28%) 133,425,455 ( 0.26%) jobs6 stalled-cycles-frontend 138,009,414,492 ( 48.23%) 139,063,571,254 ( 48.80%) 75,278,568,278 ( 32.80%) stalled-cycles-backend 79,211,949,650 ( 27.68%) 79,077,241,028 ( 27.75%) 37,735,797,899 ( 16.44%) instructions 319,763,993,731 ( 1.12) 319,937,782,834 ( 1.12) 316,663,600,784 ( 1.38) branches 61,219,433,294 ( 595.056) 61,250,355,540 ( 598.215) 60,523,446,617 ( 733.706) branch-misses 169,257,123 ( 0.28%) 154,898,028 ( 0.25%) 141,180,587 ( 0.23%) jobs7 stalled-cycles-frontend 162,974,812,119 ( 49.20%) 159,290,061,987 ( 48.43%) 88,046,641,169 ( 33.21%) stalled-cycles-backend 92,223,151,661 ( 27.84%) 91,667,904,406 ( 27.87%) 44,068,454,971 ( 16.62%) instructions 369,516,432,430 ( 1.12) 369,361,799,063 ( 1.12) 365,290,380,661 ( 1.38) branches 70,795,673,950 ( 594.220) 70,743,136,124 ( 597.876) 69,803,996,038 ( 732.822) branch-misses 181,708,327 ( 0.26%) 165,767,821 ( 0.23%) 150,109,797 ( 0.22%) jobs8 stalled-cycles-frontend 185,000,017,027 ( 49.30%) 182,334,345,473 ( 48.37%) 99,980,147,041 ( 33.26%) stalled-cycles-backend 105,753,516,186 ( 28.18%) 107,937,830,322 ( 28.63%) 51,404,177,181 ( 17.10%) instructions 418,153,161,055 ( 1.11) 418,308,565,828 ( 1.11) 413,653,475,581 ( 1.38) branches 80,035,882,398 ( 592.296) 80,063,204,510 ( 589.843) 79,024,105,589 ( 730.530) branch-misses 199,764,528 ( 0.25%) 177,936,926 ( 0.22%) 160,525,449 ( 0.20%) jobs9 stalled-cycles-frontend 210,941,799,094 ( 49.63%) 204,714,679,254 ( 48.55%) 114,251,113,756 ( 33.96%) stalled-cycles-backend 122,640,849,067 ( 28.85%) 122,188,553,256 ( 28.98%) 58,360,041,127 ( 17.35%) instructions 468,151,025,415 ( 1.10) 467,354,869,323 ( 1.11) 462,665,165,216 ( 1.38) branches 89,657,067,510 ( 585.628) 89,411,550,407 ( 588.990) 88,360,523,943 ( 730.151) branch-misses 218,292,301 ( 0.24%) 191,701,247 ( 0.21%) 178,535,678 ( 0.20%) jobs10 stalled-cycles-frontend 233,595,958,008 ( 49.81%) 227,540,615,689 ( 49.11%) 160,341,979,938 ( 43.07%) stalled-cycles-backend 136,153,676,021 ( 29.03%) 133,635,240,742 ( 28.84%) 65,909,135,465 ( 17.70%) instructions 517,001,168,497 ( 1.10) 516,210,976,158 ( 1.11) 511,374,038,613 ( 1.37) branches 98,911,641,329 ( 585.796) 98,700,069,712 ( 591.583) 97,646,761,028 ( 728.712) branch-misses 232,341,823 ( 0.23%) 199,256,308 ( 0.20%) 183,135,268 ( 0.19%) per-cpu streams tend to cause significantly less stalled cycles; execute less branches and hit less branch-misses. perf stat reported execution time 4 streams 8 streams per-cpu ==================================================================== jobs1 seconds elapsed 20.909073870 20.875670495 20.817838540 jobs2 seconds elapsed 18.529488399 18.720566469 16.356103108 jobs3 seconds elapsed 18.991159531 18.991340812 16.766216066 jobs4 seconds elapsed 19.560643828 19.551323547 16.246621715 jobs5 seconds elapsed 24.746498464 25.221646740 20.696112444 jobs6 seconds elapsed 28.258181828 28.289765505 22.885688857 jobs7 seconds elapsed 32.632490241 31.909125381 26.272753738 jobs8 seconds elapsed 35.651403851 36.027596308 29.108024711 jobs9 seconds elapsed 40.569362365 40.024227989 32.898204012 jobs10 seconds elapsed 44.673112304 43.874898137 35.632952191 Please see Link: http://marc.info/?l=linux-kernel&m=146166970727530 Link: http://marc.info/?l=linux-kernel&m=146174716719650 for more test results (under low memory conditions). Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Suggested-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
Pass GFP flags to zs_malloc() instead of using a fixed mask supplied to zs_create_pool(), so we can be more flexible, but, more importantly, we need this to switch zram to per-cpu compression streams -- zram will try to allocate handle with preemption disabled in a fast path and switch to a slow path (using different gfp mask) if the fast one has failed. Apart from that, this also align zs_malloc() interface with zspool/zbud. [sergey.senozhatsky@gmail.com: pass GFP flags to zs_malloc() instead of using a fixed mask] Link: http://lkml.kernel.org/r/20160429150942.GA637@swordfish Link: http://lkml.kernel.org/r/20160429150942.GA637@swordfishSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 1月, 2016 1 次提交
-
-
由 Jerome Marchand 提交于
The use of idr_remove() is forbidden in the callback functions of idr_for_each(). It is therefore unsafe to call idr_remove in zram_remove(). This patch moves the call to idr_remove() from zram_remove() to hot_remove_store(). In the detroy_devices() path, idrs are removed by idr_destroy(). This solves an use-after-free detected by KASan. [akpm@linux-foundation.org: fix coding stype, per Sergey] Signed-off-by: NJerome Marchand <jmarchan@redhat.com> Acked-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 11月, 2015 1 次提交
-
-
由 Jens Axboe 提交于
No functional changes in this patch, but it prepares us for returning a more useful cookie related to the IO that was queued up. Signed-off-by: NJens Axboe <axboe@fb.com> Acked-by: NChristoph Hellwig <hch@lst.de> Acked-by: NKeith Busch <keith.busch@intel.com>
-
- 07 11月, 2015 3 次提交
-
-
由 Geliang Tang 提交于
Make is_partial_io()/valid_io_request()/page_zero_filled() return boolean, since each function only uses either one or zero as its return value. Signed-off-by: NGeliang Tang <geliangtang@163.com> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey SENOZHATSKY 提交于
`mem_used_max' is designed to store the max amount of memory zram consumed to store the data. However, it does not represent the actual 'overcommited' (max) value. The existing code goes to -ENOMEM overcommited case before it updates `->stats.max_used_pages', which hides the reason we went to -ENOMEM in the first place -- we actually used more memory than `->limit_pages': alloced_pages = zs_get_total_pages(meta->mem_pool); if (zram->limit_pages && alloced_pages > zram->limit_pages) { zs_free(meta->mem_pool, handle); ret = -ENOMEM; goto out; } update_used_max(zram, alloced_pages); Which is misleading. User will see -ENOMEM, check `->limit_pages', check `->stats.max_used_pages', which will keep the value BEFORE zram passed `->limit_pages', and see: `->stats.max_used_pages' < `->limit_pages' Move update_used_max() before we do `->limit_pages' check, so that user will see: `->stats.max_used_pages' > `->limit_pages' should the overcommit and -ENOMEM happen. Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Luis Henriques 提交于
When the user supplies an unsupported compression algorithm, keep the previously selected one (knowingly supported) or the default one (if the compression algorithm hasn't been changed yet). Note that previously this operation (i.e. setting an invalid algorithm) would result in no algorithm being selected, which means that this represents a small change in the default behaviour. Minchan said: For initializing zram, we need to set up 3 optional parameters in advance. 1. the number of compression streams 2. memory limitation 3. compression algorithm Although user pass completely wrong value to set up for 1 and 2 parameters, it's okay because they have default value so zram will be initialized with the default value (of course, when user passes a wrong value via *echo*, sysfs returns -EINVAL so the user can notice it). But 3 is not consistent with other optional parameters. IOW, if the user passes a wrong value to set up 3 parameter, zram's initialization would fail unlike other optional parameters. So this patch makes them consistent. Signed-off-by: NLuis Henriques <luis.henriques@canonical.com> Acked-by: NMinchan Kim <minchan@kernel.org> Acked-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 9月, 2015 3 次提交
-
-
由 Sergey Senozhatsky 提交于
Make zram syslog error reporting more consistent. We have random error levels in some places. For example, critical errors like "Error allocating memory for compressed page" and "Unable to allocate temp memory" are reported as KERN_INFO messages. a) Reassign error levels Error messages that directly affect zram functionality -- pr_err(): Error allocating zram address table Error creating memory pool Decompression failed! err=%d, page=%u Unable to allocate temp memory Compression failed! err=%d Error allocating memory for compressed page: %u, size=%zu Cannot initialise %s compressing backend Error allocating disk queue for device %d Error allocating disk structure for device %d Error creating sysfs group for device %d Unable to register zram-control class Unable to get major number Messages that do not affect functionality, but user must be warned (because sysfs attrs will be removed in this particular case) -- pr_warn(): %d (%s) Attribute %s (and others) will be removed. %s Messages that do not affect functionality and mostly are informative -- pr_info(): Cannot change max compression streams Can't change algorithm for initialized device Cannot change disksize for initialized device Added device: %s Removed device: %s b) Update sysfs_create_group() error message First, it lacks a trailing new line; add it. Second, every error message in zram_add() has a "for device %d" part, which makes errors more informative. Add missing part to "Error creating sysfs group" message. Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
Compaction returns back to zram the number of migrated objects, which is quite uninformative -- we have objects of different sizes so user space cannot obtain any valuable data from that number. Change compaction to operate in terms of pages and return back to compaction issuer the number of pages that were freed during compaction. So from now on we will export more meaningful value in zram<id>/mm_stat -- the number of freed (compacted) pages. This requires: (a) a rename of `num_migrated' to 'pages_compacted' (b) a internal API change -- return first_page's fullness_group from putback_zspage(), so we know when putback_zspage() did free_zspage(). It helps us to account compaction stats correctly. Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sergey Senozhatsky 提交于
`zs_compact_control' accounts the number of migrated objects but it has a limited lifespan -- we lose it as soon as zs_compaction() returns back to zram. It worked fine, because (a) zram had it's own counter of migrated objects and (b) only zram could trigger compaction. However, this does not work for automatic pool compaction (not issued by zram). To account objects migrated during auto-compaction (issued by the shrinker) we need to store this number in zs_pool. Define a new `struct zs_pool_stats' structure to keep zs_pool's stats there. It provides only `num_migrated', as of this writing, but it surely can be extended. A new zsmalloc zs_pool_stats() symbol exports zs_pool's stats back to caller. Use zs_pool_stats() in zram and remove `num_migrated' from zram_stats. Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Suggested-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 8月, 2015 1 次提交
-
-
由 Sergey Senozhatsky 提交于
zram_meta_alloc() constructs a pool name for zs_create_pool() call as snprintf(pool_name, sizeof(pool_name), "zram%d", device_id); However, it defines pool name buffer to be only 8 bytes long (minus trailing zero), which means that we can have only 1000 pool names: zram0 -- zram999. With CONFIG_ZSMALLOC_STAT enabled an attempt to create a device zram1000 can fail if device zram100 already exists, because snprintf() will truncate new pool name to zram100 and pass it debugfs_create_dir(), causing: debugfs dir <zram100> creation failed zram: Error creating memory pool ... and so on. Fix it by passing zram->disk->disk_name to zram_meta_alloc() instead of divice_id. We construct zram%d name earlier and keep it as a ->disk_name, no need to snprintf() it again. Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 8月, 2015 1 次提交
-
-
由 Kent Overstreet 提交于
The way the block layer is currently written, it goes to great lengths to avoid having to split bios; upper layer code (such as bio_add_page()) checks what the underlying device can handle and tries to always create bios that don't need to be split. But this approach becomes unwieldy and eventually breaks down with stacked devices and devices with dynamic limits, and it adds a lot of complexity. If the block layer could split bios as needed, we could eliminate a lot of complexity elsewhere - particularly in stacked drivers. Code that creates bios can then create whatever size bios are convenient, and more importantly stacked drivers don't have to deal with both their own bio size limitations and the limitations of the (potentially multiple) devices underneath them. In the future this will let us delete merge_bvec_fn and a bunch of other code. We do this by adding calls to blk_queue_split() to the various make_request functions that need it - a few can already handle arbitrary size bios. Note that we add the call _after_ any call to blk_queue_bounce(); this means that blk_queue_split() and blk_recalc_rq_segments() don't need to be concerned with bouncing affecting segment merging. Some make_request_fn() callbacks were simple enough to audit and verify they don't need blk_queue_split() calls. The skipped ones are: * nfhd_make_request (arch/m68k/emu/nfblock.c) * axon_ram_make_request (arch/powerpc/sysdev/axonram.c) * simdisk_make_request (arch/xtensa/platforms/iss/simdisk.c) * brd_make_request (ramdisk - drivers/block/brd.c) * mtip_submit_request (drivers/block/mtip32xx/mtip32xx.c) * loop_make_request * null_queue_bio * bcache's make_request fns Some others are almost certainly safe to remove now, but will be left for future patches. Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ming Lei <ming.lei@canonical.com> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: drbd-user@lists.linbit.com Cc: Jiri Kosina <jkosina@suse.cz> Cc: Geoff Levand <geoff@infradead.org> Cc: Jim Paris <jim@jtan.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Acked-by: NeilBrown <neilb@suse.de> (for the 'md/md.c' bits) Acked-by: NMike Snitzer <snitzer@redhat.com> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Signed-off-by: NKent Overstreet <kent.overstreet@gmail.com> [dpark: skip more mq-based drivers, resolve merge conflicts, etc.] Signed-off-by: NDongsu Park <dpark@posteo.net> Signed-off-by: NMing Lin <ming.l@ssi.samsung.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 29 7月, 2015 1 次提交
-
-
由 Christoph Hellwig 提交于
Currently we have two different ways to signal an I/O error on a BIO: (1) by clearing the BIO_UPTODATE flag (2) by returning a Linux errno value to the bi_end_io callback The first one has the drawback of only communicating a single possible error (-EIO), and the second one has the drawback of not beeing persistent when bios are queued up, and are not passed along from child to parent bio in the ever more popular chaining scenario. Having both mechanisms available has the additional drawback of utterly confusing driver authors and introducing bugs where various I/O submitters only deal with one of them, and the others have to add boilerplate code to deal with both kinds of error returns. So add a new bi_error field to store an errno value directly in struct bio and remove the existing mechanisms to clean all this up. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Reviewed-by: NNeilBrown <neilb@suse.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 17 7月, 2015 1 次提交
-
-
由 Jens Axboe 提交于
Some drivers use it now, others just set the limits field manually. But in preparation for splitting this into a hard and soft limit, ensure that they all call the proper function for setting the hw limit for discards. Reviewed-by: NJeff Moyer <jmoyer@redhat.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 26 6月, 2015 1 次提交
-
-
由 Sergey Senozhatsky 提交于
Improvement idea by Marcin Jabrzyk. comp_algorithm_store() silently accepts any supplied algorithm name, because zram performs algorithm availability check later, during the device configuration phase in disksize_store() and emits the following error: "zram: Cannot initialise %s compressing backend" this error line is somewhat generic and, besides, can indicate a failed attempt to allocate compression backend's working buffers. add algorithm availability check to comp_algorithm_store(): echo lzz > /sys/block/zram0/comp_algorithm -bash: echo: write error: Invalid argument Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: NMarcin Jabrzyk <m.jabrzyk@samsung.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-