- 28 5月, 2013 1 次提交
-
-
由 Stanislaw Gruszka 提交于
Simple cleanup. Reported-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1367501673-6563-1-git-send-email-sgruszka@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 5月, 2013 3 次提交
-
-
由 Stanislaw Gruszka 提交于
Dave Hansen reported strange utime/stime values on his system: https://lkml.org/lkml/2013/4/4/435 This happens because prev->stime value is bigger than rtime value. Root of the problem are non-monotonic rtime values (i.e. current rtime is smaller than previous rtime) and that should be debugged and fixed. But since problem did not manifest itself before commit 62188451 "cputime: Avoid multiplication overflow on utime scaling", it should be threated as regression, which we can easily fixed on cputime_adjust() function. For now, let's apply this fix, but further work is needed to fix root of the problem. Reported-and-tested-by: NDave Hansen <dave@sr71.net> Cc: <stable@vger.kernel.org> # 3.9+ Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1367314507-9728-3-git-send-email-sgruszka@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Stanislaw Gruszka 提交于
Due to rounding in scale_stime(), for big numbers, scaled stime values will grow in chunks. Since rtime grow in jiffies and we calculate utime like below: prev->stime = max(prev->stime, stime); prev->utime = max(prev->utime, rtime - prev->stime); we could erroneously account stime values as utime. To prevent that only update prev->{u,s}time values when they are smaller than current rtime. Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1367314507-9728-2-git-send-email-sgruszka@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Stanislaw Gruszka 提交于
Here is patch, which adds Linus's cputime scaling algorithm to the kernel. This is a follow up (well, fix) to commit d9a3c982 ("sched: Lower chances of cputime scaling overflow") which commit tried to avoid multiplication overflow, but did not guarantee that the overflow would not happen. Linus crated a different algorithm, which completely avoids the multiplication overflow by dropping precision when numbers are big. It was tested by me and it gives good relative error of scaled numbers. Testing method is described here: http://marc.info/?l=linux-kernel&m=136733059505406&w=2 Originally-From: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130430151441.GC10465@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 4月, 2013 1 次提交
-
-
由 Li Zefan 提交于
So we can remove open-coded cpuacct code in cputime.c. Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51553692.9060008@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 08 4月, 2013 1 次提交
-
-
由 Stanislaw Gruszka 提交于
Recent commit 6fac4829 ("cputime: Use accessors to read task cputime stats") introduced a bug, where we account many times the cputime of the first thread, instead of cputimes of all the different threads. Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130404085740.GA2495@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 3月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
Some users have reported that after running a process with hundreds of threads on intensive CPU-bound loads, the cputime of the group started to freeze after a few days. This is due to how we scale the tick-based cputime against the scheduler precise execution time value. We add the values of all threads in the group and we multiply that against the sum of the scheduler exec runtime of the whole group. This easily overflows after a few days/weeks of execution. A proposed solution to solve this was to compute that multiplication on stime instead of utime: 62188451 ("cputime: Avoid multiplication overflow on utime scaling") The rationale behind that was that it's easy for a thread to spend most of its time in userspace under intensive CPU-bound workload but it's much harder to do CPU-bound intensive long run in the kernel. This postulate got defeated when a user recently reported he was still seeing cputime freezes after the above patch. The workload that triggers this issue relates to intensive networking workloads where most of the cputime is consumed in the kernel. To reduce much more the opportunities for multiplication overflow, lets reduce the multiplication factors to the remainders of the division between sched exec runtime and cputime. Assuming the difference between these shouldn't ever be that large, it could work on many situations. This gets the same results as in the upstream scaling code except for a small difference: the upstream code always rounds the results to the nearest integer not greater to what would be the precise result. The new code rounds to the nearest integer either greater or not greater. In practice this difference probably shouldn't matter but it's worth mentioning. If this solution appears not to be enough in the end, we'll need to partly revert back to the behaviour prior to commit 0cf55e1e ("sched, cputime: Introduce thread_group_times()") Back then, the scaling was done on exit() time before adding the cputime of an exiting thread to the signal struct. And then we'll need to scale one-by-one the live threads cputime in thread_group_cputime(). The drawback may be a slightly slower code on exit time. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org>
-
- 08 3月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
The full dynticks cputime accounting is able to account either using the tick or the context tracking subsystem. This way the housekeeping CPU can keep the low overhead tick based solution. This latter mode has a low jiffies resolution granularity and need to be scaled against CFS precise runtime accounting to improve its result. We are doing this for CONFIG_TICK_CPU_ACCOUNTING, now we also need to expand it to full dynticks accounting dynamic off-case as well. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Mats Liljegren <mats.liljegren@enea.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 24 2月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
Running the full dynticks cputime accounting with preemptible kernel debugging trigger the following warning: [ 4.488303] BUG: using smp_processor_id() in preemptible [00000000] code: init/1 [ 4.490971] caller is native_sched_clock+0x22/0x80 [ 4.493663] Pid: 1, comm: init Not tainted 3.8.0+ #13 [ 4.496376] Call Trace: [ 4.498996] [<ffffffff813410eb>] debug_smp_processor_id+0xdb/0xf0 [ 4.501716] [<ffffffff8101e642>] native_sched_clock+0x22/0x80 [ 4.504434] [<ffffffff8101db99>] sched_clock+0x9/0x10 [ 4.507185] [<ffffffff81096ccd>] fetch_task_cputime+0xad/0x120 [ 4.509916] [<ffffffff81096dd5>] task_cputime+0x35/0x60 [ 4.512622] [<ffffffff810f146e>] acct_update_integrals+0x1e/0x40 [ 4.515372] [<ffffffff8117d2cf>] do_execve_common+0x4ff/0x5c0 [ 4.518117] [<ffffffff8117cf14>] ? do_execve_common+0x144/0x5c0 [ 4.520844] [<ffffffff81867a10>] ? rest_init+0x160/0x160 [ 4.523554] [<ffffffff8117d457>] do_execve+0x37/0x40 [ 4.526276] [<ffffffff810021a3>] run_init_process+0x23/0x30 [ 4.528953] [<ffffffff81867aac>] kernel_init+0x9c/0xf0 [ 4.531608] [<ffffffff8188356c>] ret_from_fork+0x7c/0xb0 We use sched_clock() to perform and fixup the cputime accounting. However we are calling it with preemption enabled from the read side, which trigger the bug above. To fix this up, use local_clock() instead. It takes care of preemption and also provide a more reliable clock source. This is welcome for this kind of statistic that is widely relied on in userspace. Reported-by: NThomas Gleixner <tglx@linutronix.de> Reported-by: NIngo Molnar <mingo@kernel.org> Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kevin Hilman <khilman@linaro.org> Link: http://lkml.kernel.org/r/1361636925-22288-3-git-send-email-fweisbec@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 2月, 2013 1 次提交
-
-
由 Thomas Gleixner 提交于
The reader side code has no requirement to disable interrupts while sampling data. The sequence counter is enough to ensure consistency. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 1月, 2013 6 次提交
-
-
由 Frederic Weisbecker 提交于
While remotely reading the cputime of a task running in a full dynticks CPU, the values stored in utime/stime fields of struct task_struct may be stale. Its values may be those of the last kernel <-> user transition time snapshot and we need to add the tickless time spent since this snapshot. To fix this, flush the cputime of the dynticks CPUs on kernel <-> user transition and record the time / context where we did this. Then on top of this snapshot and the current time, perform the fixup on the reader side from task_times() accessors. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> [fixed kvm module related build errors] Signed-off-by: NSedat Dilek <sedat.dilek@gmail.com>
-
由 Frederic Weisbecker 提交于
Do some ground preparatory work before adding guest_enter() and guest_exit() context tracking callbacks. Those will be later used to read the guest cputime safely when we run in full dynticks mode. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Gleb Natapov <gleb@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
This is in preparation for the full dynticks feature. While remotely reading the cputime of a task running in a full dynticks CPU, we'll need to do some extra-computation. This way we can account the time it spent tickless in userspace since its last cputime snapshot. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
Allow to dynamically switch between tick and virtual based cputime accounting. This way we can provide a kind of "on-demand" virtual based cputime accounting. In this mode, the kernel relies on the context tracking subsystem to dynamically probe on kernel boundaries. This is in preparation for being able to stop the timer tick in more places than just the idle state. Doing so will depend on CONFIG_VIRT_CPU_ACCOUNTING_GEN which makes it possible to account the cputime without the tick by hooking on kernel/user boundaries. Depending whether the tick is stopped or not, we can switch between tick and vtime based accounting anytime in order to minimize the overhead associated to user hooks. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
If the architecture doesn't provide an implementation of nsecs_to_cputime(), the cputime accounting core uses a default one that converts the nanoseconds to jiffies. However this only makes sense if we use the jiffies based cputime. For now it doesn't matter much because this API is only called on code that uses jiffies based cputime accounting. But the code may evolve and this API may be used more broadly in the future. Keeping this default implementation around is very error prone as it may introduce a bug and hide it on architectures that don't override this API. Fix this by moving this definition to the jiffies based cputime headers as it is the only place where it belongs to. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 27 1月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
We scale stime, utime values based on rtime (sum_exec_runtime converted to jiffies). During scaling we multiple rtime * utime, which seems to be fine, since both values are converted to u64, but it's not. Let assume HZ is 1000 - 1ms tick. Process consist of 64 threads, run for 1 day, threads utilize 100% cpu on user space. Machine has 64 cpus. Process rtime = utime will be 64 * 24 * 60 * 60 * 1000 jiffies, which is 0x149970000. Multiplication rtime * utime result is 0x1a855771100000000, which can not be covered in 64 bits. Result of overflow is stall of utime values visible in user space (prev_utime in kernel), even if application still consume lot of CPU time. A solution to solve this is to perform the multiplication on stime instead of utime. It's easy to grow the utime value fast with a CPU bound thread in userspace for example. Now we assume that doing so with stime is much harder. In most cases a task shouldn't ever spend much time in kernel space as it tends to sleep waiting for jobs completion when they take long to achieve. IO is the typical example of that. Hence scaling the cputime by performing the multiplication on stime instead of utime should considerably reduce the chances of an overflow on most workloads. This is largely inspired by a patch from Stanislaw Gruszka: http://lkml.kernel.org/r/20130107113144.GA7544@redhat.comInspired-by: NStanislaw Gruszka <sgruszka@redhat.com> Reported-by: NStanislaw Gruszka <sgruszka@redhat.com> Acked-by: NStanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1359217182-25184-1-git-send-email-fweisbec@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 11月, 2012 4 次提交
-
-
由 Frederic Weisbecker 提交于
The reason for the scaling and monotonicity correction performed by cputime_adjust() may not be immediately clear to the reviewer. Add some comments to explain what happens there. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
由 Frederic Weisbecker 提交于
task_cputime_adjusted() and thread_group_cputime_adjusted() essentially share the same code. They just don't use the same source: * The first function uses the cputime in the task struct and the previous adjusted snapshot that ensures monotonicity. * The second adds the cputime of all tasks in the group and the previous adjusted snapshot of the whole group from the signal structure. Just consolidate the common code that does the adjustment. These functions just need to fetch the values from the appropriate source. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
由 Frederic Weisbecker 提交于
We have thread_group_cputime() and thread_group_times(). The naming doesn't provide enough information about the difference between these two APIs. To lower the confusion, rename thread_group_times() to thread_group_cputime_adjusted(). This name better suggests that it's a version of thread_group_cputime() that does some stabilization on the raw cputime values. ie here: scale on top of CFS runtime stats and bound lower value for monotonicity. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
由 Frederic Weisbecker 提交于
thread_group_cputime() is a general cputime API that is not only used by posix cpu timer. Let's move this helper to sched code. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
- 19 11月, 2012 3 次提交
-
-
由 Frederic Weisbecker 提交于
vtime_account() is only called from irq entry. irqs are always disabled at this point so we can safely remove the irq disabling guards on that function. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
由 Frederic Weisbecker 提交于
On ia64 and powerpc, vtime context switch only consists in flushing system and user pending time, plus a few arch housekeeping. Consolidate that into a generic implementation. s390 is a special case because pending user and system time accounting there is hard to dissociate. So it's keeping its own implementation. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
由 Frederic Weisbecker 提交于
Prepending irq-unsafe vtime APIs with underscores was actually a bad idea as the result is a big mess in the API namespace that is even waiting to be further extended. Also these helpers are always called from irq safe callers except kvm. Just provide a vtime_account_system_irqsafe() for this specific case so that we can remove the underscore prefix on other vtime functions. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
- 30 10月, 2012 2 次提交
-
-
由 Frederic Weisbecker 提交于
vtime_account() doesn't have the same role in CONFIG_VIRT_CPU_ACCOUNTING and CONFIG_IRQ_TIME_ACCOUNTING. In the first case it handles time accounting in any context. In the second case it only handles irq time accounting. So when vtime_account() is called from outside vtime_account_irq_*() this call is pointless to CONFIG_IRQ_TIME_ACCOUNTING. To fix the confusion, change vtime_account() to irqtime_account_irq() in CONFIG_IRQ_TIME_ACCOUNTING. This way we ensure future account_vtime() calls won't waste useless cycles in the irqtime APIs. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
由 Frederic Weisbecker 提交于
vtime_account_system() currently has only one caller with vtime_account() which is irq safe. Now we are going to call it from other places like kvm where irqs are not always disabled by the time we account the cputime. So let's make it irqsafe. The arch implementation part is now prefixed with "__". vtime_account_idle() arch implementation is prefixed accordingly to stay consistent. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
- 25 9月, 2012 2 次提交
-
-
由 Frederic Weisbecker 提交于
Move the code that finds out to which context we account the cputime into generic layer. Archs that consider the whole time spent in the idle task as idle time (ia64, powerpc) can rely on the generic vtime_account() and implement vtime_account_system() and vtime_account_idle(), letting the generic code to decide when to call which API. Archs that have their own meaning of idle time, such as s390 that only considers the time spent in CPU low power mode as idle time, can just override vtime_account(). Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
-
由 Frederic Weisbecker 提交于
Use a naming based on vtime as a prefix for virtual based cputime accounting APIs: - account_system_vtime() -> vtime_account() - account_switch_vtime() -> vtime_task_switch() It makes it easier to allow for further declension such as vtime_account_system(), vtime_account_idle(), ... if we want to find out the context we account to from generic code. This also make it better to know on which subsystem these APIs refer to. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 20 8月, 2012 1 次提交
-
-
由 Frederic Weisbecker 提交于
Extract cputime code from the giant sched/core.c and put it in its own file. This make it easier to deal with this particular area and de-bloat a bit more core.c Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
-