- 18 8月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
The hardlockup detector on x86 uses a performance counter based on unhalted CPU cycles and a periodic hrtimer. The hrtimer period is about 2/5 of the performance counter period, so the hrtimer should fire 2-3 times before the performance counter NMI fires. The NMI code checks whether the hrtimer fired since the last invocation. If not, it assumess a hard lockup. The calculation of those periods is based on the nominal CPU frequency. Turbo modes increase the CPU clock frequency and therefore shorten the period of the perf/NMI watchdog. With extreme Turbo-modes (3x nominal frequency) the perf/NMI period is shorter than the hrtimer period which leads to false positives. A simple fix would be to shorten the hrtimer period, but that comes with the side effect of more frequent hrtimer and softlockup thread wakeups, which is not desired. Implement a low pass filter, which checks the perf/NMI period against kernel time. If the perf/NMI fires before 4/5 of the watchdog period has elapsed then the event is ignored and postponed to the next perf/NMI. That solves the problem and avoids the overhead of shorter hrtimer periods and more frequent softlockup thread wakeups. Fixes: 58687acb ("lockup_detector: Combine nmi_watchdog and softlockup detector") Reported-and-tested-by: NKan Liang <Kan.liang@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: dzickus@redhat.com Cc: prarit@redhat.com Cc: ak@linux.intel.com Cc: babu.moger@oracle.com Cc: peterz@infradead.org Cc: eranian@google.com Cc: acme@redhat.com Cc: stable@vger.kernel.org Cc: atomlin@redhat.com Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708150931310.1886@nanos
-
- 15 7月, 2017 1 次提交
-
-
由 Kefeng Wang 提交于
After commit 73ce0511 ("kernel/watchdog.c: move hardlockup detector to separate file"), 'NMI watchdog' is inappropriate in kernel/watchdog.c, using 'watchdog' only. Link: http://lkml.kernel.org/r/1499928642-48983-1-git-send-email-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Cc: Babu Moger <babu.moger@oracle.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 7月, 2017 2 次提交
-
-
由 Nicholas Piggin 提交于
After reconfiguring watchdog sysctls etc., architecture specific watchdogs may not get all their parameters updated. watchdog_nmi_reconfigure() can be implemented to pull the new values in and set the arch NMI watchdog. [npiggin@gmail.com: add code comments] Link: http://lkml.kernel.org/r/20170617125933.774d3858@roar.ozlabs.ibm.com [arnd@arndb.de: hide unused function] Link: http://lkml.kernel.org/r/20170620204854.966601-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170616065715.18390-5-npiggin@gmail.comSigned-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NDon Zickus <dzickus@redhat.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nicholas Piggin 提交于
Split SOFTLOCKUP_DETECTOR from LOCKUP_DETECTOR, and split HARDLOCKUP_DETECTOR_PERF from HARDLOCKUP_DETECTOR. LOCKUP_DETECTOR implies the general boot, sysctl, and programming interfaces for the lockup detectors. An architecture that wants to use a hard lockup detector must define HAVE_HARDLOCKUP_DETECTOR_PERF or HAVE_HARDLOCKUP_DETECTOR_ARCH. Alternatively an arch can define HAVE_NMI_WATCHDOG, which provides the minimum arch_touch_nmi_watchdog, and it otherwise does its own thing and does not implement the LOCKUP_DETECTOR interfaces. sparc is unusual in that it has started to implement some of the interfaces, but not fully yet. It should probably be converted to a full HAVE_HARDLOCKUP_DETECTOR_ARCH. [npiggin@gmail.com: fix] Link: http://lkml.kernel.org/r/20170617223522.66c0ad88@roar.ozlabs.ibm.com Link: http://lkml.kernel.org/r/20170616065715.18390-4-npiggin@gmail.comSigned-off-by: NNicholas Piggin <npiggin@gmail.com> Reviewed-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NBabu Moger <babu.moger@oracle.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 3月, 2017 3 次提交
-
-
由 Ingo Molnar 提交于
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/debug.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
We are going to move scheduler ABI details to <uapi/linux/sched/types.h>, which will be used from a number of .c files. Create empty placeholder header that maps to <linux/types.h>. Include the new header in the files that are going to need it. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which will have to be picked up from other headers and .c files. Create a trivial placeholder <linux/sched/clock.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 1月, 2017 1 次提交
-
-
由 Don Zickus 提交于
On an overloaded system, it is possible that a change in the watchdog threshold can be delayed long enough to trigger a false positive. This can easily be achieved by having a cpu spinning indefinitely on a task, while another cpu updates watchdog threshold. What happens is while trying to park the watchdog threads, the hrtimers on the other cpus trigger and reprogram themselves with the new slower watchdog threshold. Meanwhile, the nmi watchdog is still programmed with the old faster threshold. Because the one cpu is blocked, it prevents the thread parking on the other cpus from completing, which is needed to shutdown the nmi watchdog and reprogram it correctly. As a result, a false positive from the nmi watchdog is reported. Fix this by setting a park_in_progress flag to block all lockups until the parking is complete. Fix provided by Ulrich Obergfell. [akpm@linux-foundation.org: s/park_in_progress/watchdog_park_in_progress/] Link: http://lkml.kernel.org/r/1481041033-192236-1-git-send-email-dzickus@redhat.comSigned-off-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 12月, 2016 3 次提交
-
-
由 Babu Moger 提交于
Separate hardlockup code from watchdog.c and move it to watchdog_hld.c. It is mostly straight forward. Remove everything inside CONFIG_HARDLOCKUP_DETECTORS. This code will go to file watchdog_hld.c. Also update the makefile accordigly. Link: http://lkml.kernel.org/r/1478034826-43888-3-git-send-email-babu.moger@oracle.comSigned-off-by: NBabu Moger <babu.moger@oracle.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Andi Kleen <andi@firstfloor.org> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Josh Hunt <johunt@akamai.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Babu Moger 提交于
Patch series "Clean up watchdog handlers", v2. This is an attempt to cleanup watchdog handlers. Right now, kernel/watchdog.c implements both softlockup and hardlockup detectors. Softlockup code is generic. Hardlockup code is arch specific. Some architectures don't use hardlockup detectors. They use their own watchdog detectors. To make both these combination work, we have numerous #ifdefs in kernel/watchdog.c. We are trying here to make these handlers independent of each other. Also provide an interface for architectures to implement their own handlers. watchdog_nmi_enable and watchdog_nmi_disable will be defined as weak such that architectures can override its definitions. Thanks to Don Zickus for his suggestions. Here are our previous discussions http://www.spinics.net/lists/sparclinux/msg16543.html http://www.spinics.net/lists/sparclinux/msg16441.html This patch (of 3): Move shared macros and definitions to nmi.h so that watchdog.c, new file watchdog_hld.c or any other architecture specific handler can use those definitions. Link: http://lkml.kernel.org/r/1478034826-43888-2-git-send-email-babu.moger@oracle.comSigned-off-by: NBabu Moger <babu.moger@oracle.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Andi Kleen <andi@firstfloor.org> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Josh Hunt <johunt@akamai.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
NMI handler doesn't call set_irq_regs(), it's set only by normal IRQ. Thus get_irq_regs() returns NULL or stale registers snapshot with IP/SP pointing to the code interrupted by IRQ which was interrupted by NMI. NULL isn't a problem: in this case watchdog calls dump_stack() and prints full stack trace including NMI. But if we're stuck in IRQ handler then NMI watchlog will print stack trace without IRQ part at all. This patch uses registers snapshot passed into NMI handler as arguments: these registers point exactly to the instruction interrupted by NMI. Fixes: 55537871 ("kernel/watchdog.c: perform all-CPU backtrace in case of hard lockup") Link: http://lkml.kernel.org/r/146771764784.86724.6006627197118544150.stgit@buzzSigned-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 7月, 2016 1 次提交
-
-
由 Ingo Molnar 提交于
This reverts commit 2c95afc1. Stephane reported the following regression: > Since Andi added: > > commit 2c95afc1 > Author: Andi Kleen <ak@linux.intel.com> > Date: Thu Jun 9 06:14:38 2016 -0700 > > perf/x86/intel, watchdog: Switch NMI watchdog to ref cycles on x86 > > $ perf stat -e ref-cycles ls > <not counted> .... > > fails systematically because the ref-cycles is now used by the > watchdog and given this is a system-wide pinned event, it monopolizes > the fixed counter 2 which is the only counter able to measure this event. Since the next merge window is near, fix the regression for now by reverting the commit. Reported-by: NStephane Eranian <eranian@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 6月, 2016 1 次提交
-
-
由 Andi Kleen 提交于
The NMI watchdog uses either the fixed cycles or a generic cycles counter. This causes a lot of conflicts with users of the PMU who want to run a full group including the cycles fixed counter, for example the --topdown support recently added to perf stat. The code needs to fall back to not use groups, which can cause measurement inaccuracy due to multiplexing errors. This patch switches the NMI watchdog to use reference cycles on Intel systems. This is actually more accurate than cycles, because cycles can tick faster than the measured CPU Frequency due to Turbo mode. The ref cycles always tick at their frequency, or slower when the system is idling. That means the NMI watchdog can never expire too early, unlike with cycles. The reference cycles tick roughly at the frequency of the TSC, so the same period computation can be used. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1465478079-19993-1-git-send-email-andi@firstfloor.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 3月, 2016 1 次提交
-
-
由 Joshua Hunt 提交于
While working on a script to restore all sysctl params before a series of tests I found that writing any value into the /proc/sys/kernel/{nmi_watchdog,soft_watchdog,watchdog,watchdog_thresh} causes them to call proc_watchdog_update(). NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. There doesn't appear to be a reason for doing this work every time a write occurs, so only do it when the values change. Signed-off-by: NJosh Hunt <johunt@akamai.com> Acked-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: <stable@vger.kernel.org> [4.1.x+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 12月, 2015 2 次提交
-
-
由 Hidehiro Kawai 提交于
Currently, kdump_nmi_shootdown_cpus(), a subroutine of crash_kexec(), sends an NMI IPI to CPUs which haven't called panic() to stop them, save their register information and do some cleanups for crash dumping. However, if such a CPU is infinitely looping in NMI context, we fail to save its register information into the crash dump. For example, this can happen when unknown NMIs are broadcast to all CPUs as follows: CPU 0 CPU 1 =========================== ========================== receive an unknown NMI unknown_nmi_error() panic() receive an unknown NMI spin_trylock(&panic_lock) unknown_nmi_error() crash_kexec() panic() spin_trylock(&panic_lock) panic_smp_self_stop() infinite loop kdump_nmi_shootdown_cpus() issue NMI IPI -----------> blocked until IRET infinite loop... Here, since CPU 1 is in NMI context, the second NMI from CPU 0 is blocked until CPU 1 executes IRET. However, CPU 1 never executes IRET, so the NMI is not handled and the callback function to save registers is never called. In practice, this can happen on some servers which broadcast NMIs to all CPUs when the NMI button is pushed. To save registers in this case, we need to: a) Return from NMI handler instead of looping infinitely or b) Call the callback function directly from the infinite loop Inherently, a) is risky because NMI is also used to prevent corrupted data from being propagated to devices. So, we chose b). This patch does the following: 1. Move the infinite looping of CPUs which haven't called panic() in NMI context (actually done by panic_smp_self_stop()) outside of panic() to enable us to refer pt_regs. Please note that panic_smp_self_stop() is still used for normal context. 2. Call a callback of kdump_nmi_shootdown_cpus() directly to save registers and do some cleanups after setting waiting_for_crash_ipi which is used for counting down the number of CPUs which handled the callback Signed-off-by: NHidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Dave Young <dyoung@redhat.com> Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Gobinda Charan Maji <gobinda.cemk07@gmail.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Javi Merino <javi.merino@arm.com> Cc: Jiang Liu <jiang.liu@linux.intel.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: lkml <linux-kernel@vger.kernel.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Seth Jennings <sjenning@redhat.com> Cc: Stefan Lippers-Hollmann <s.l-h@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Link: http://lkml.kernel.org/r/20151210014628.25437.75256.stgit@softrs [ Cleanup comments, fixup formatting. ] Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Hidehiro Kawai 提交于
If panic on NMI happens just after panic() on the same CPU, panic() is recursively called. Kernel stalls, as a result, after failing to acquire panic_lock. To avoid this problem, don't call panic() in NMI context if we've already entered panic(). For that, introduce nmi_panic() macro to reduce code duplication. In the case of panic on NMI, don't return from NMI handlers if another CPU already panicked. Signed-off-by: NHidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Gobinda Charan Maji <gobinda.cemk07@gmail.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Javi Merino <javi.merino@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: lkml <linux-kernel@vger.kernel.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Link: http://lkml.kernel.org/r/20151210014626.25437.13302.stgit@softrs [ Cleanup comments, fixup formatting. ] Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 09 12月, 2015 2 次提交
-
-
由 Tejun Heo 提交于
Workqueue stalls can happen from a variety of usage bugs such as missing WQ_MEM_RECLAIM flag or concurrency managed work item indefinitely staying RUNNING. These stalls can be extremely difficult to hunt down because the usual warning mechanisms can't detect workqueue stalls and the internal state is pretty opaque. To alleviate the situation, this patch implements workqueue lockup detector. It periodically monitors all worker_pools periodically and, if any pool failed to make forward progress longer than the threshold duration, triggers warning and dumps workqueue state as follows. BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 31s! Showing busy workqueues and worker pools: workqueue events: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=17/256 pending: monkey_wrench_fn, e1000_watchdog, cache_reap, vmstat_shepherd, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, cgroup_release_agent workqueue events_power_efficient: flags=0x80 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 pending: check_lifetime, neigh_periodic_work workqueue cgroup_pidlist_destroy: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1 pending: cgroup_pidlist_destroy_work_fn ... The detection mechanism is controller through kernel parameter workqueue.watchdog_thresh and can be updated at runtime through the sysfs module parameter file. v2: Decoupled from softlockup control knobs. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Andrew Morton <akpm@linux-foundation.org>
-
由 Tejun Heo 提交于
touch_softlockup_watchdog() is used to tell watchdog that scheduler stall is expected. One group of usage is from paths where the task may not be able to yield for a long time such as performing slow PIO to finicky device and coming out of suspend. The other is to account for scheduler and timer going idle. For scheduler softlockup detection, there's no reason to distinguish the two cases; however, workqueue lockup detector is planned and it can use the same signals from the former group while the latter would spuriously prevent detection. This patch introduces a new function touch_softlockup_watchdog_sched() and convert the latter group to call it instead. For now, it just calls touch_softlockup_watchdog() and there's no functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org>
-
- 06 11月, 2015 12 次提交
-
-
由 Ulrich Obergfell 提交于
Theoretically it is possible that the watchdog timer expires right at the time when a user sets 'watchdog_thresh' to zero (note: this disables the lockup detectors). In this scenario, the is_softlockup() function - which is called by the timer - could produce a false positive. Fix this by checking the current value of 'watchdog_thresh'. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
watchdog_{park|unpark}_threads() are now called in code paths that protect themselves against CPU hotplug, so {get|put}_online_cpus() calls are redundant and can be removed. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
The handler functions for watchdog parameters in /proc/sys/kernel do not protect themselves against races with CPU hotplug. Hence, theoretically it is possible that a new watchdog thread is started on a hotplugged CPU while a parameter is being modified, and the thread could thus use a parameter value that is 'in transition'. For example, if 'watchdog_thresh' is being set to zero (note: this disables the lockup detectors) the thread would erroneously use the value zero as the sample period. To avoid such races and to keep the /proc handler code consistent, call {get|put}_online_cpus() in proc_watchdog_common() {get|put}_online_cpus() in proc_watchdog_thresh() {get|put}_online_cpus() in proc_watchdog_cpumask() Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
The lockup detector suspend/resume interface that was introduced by commit 8c073d27 ("watchdog: introduce watchdog_suspend() and watchdog_resume()") does not protect itself against races with CPU hotplug. Hence, theoretically it is possible that a new watchdog thread is started on a hotplugged CPU while the lockup detector is suspended, and the thread could thus interfere unexpectedly with the code that requested to suspend the lockup detector. Avoid the race by calling get_online_cpus() in lockup_detector_suspend() put_online_cpus() in lockup_detector_resume() Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Don Zickus 提交于
The only way to enable a hardlockup to panic the machine is to set 'nmi_watchdog=panic' on the kernel command line. This makes it awkward for end users and folks who want to run automate tests (like myself). Mimic the softlockup_panic knob and create a /proc/sys/kernel/hardlockup_panic knob. Signed-off-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Acked-by: NJiri Kosina <jkosina@suse.cz> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jiri Kosina 提交于
In many cases of hardlockup reports, it's actually not possible to know why it triggered, because the CPU that got stuck is usually waiting on a resource (with IRQs disabled) in posession of some other CPU is holding. IOW, we are often looking at the stacktrace of the victim and not the actual offender. Introduce sysctl / cmdline parameter that makes it possible to have hardlockup detector perform all-CPU backtrace. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
If kthread_park() returns an error, watchdog_park_threads() should not blindly 'roll back' the already parked threads to the unparked state. Instead leave it up to the callers to handle such errors appropriately in their context. For example, it is redundant to unpark the threads if the lockup detectors will soon be disabled by the callers anyway. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
lockup_detector_suspend() now handles errors from watchdog_park_threads(). Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
update_watchdog_all_cpus() now passes errors from watchdog_park_threads() up to functions in the call chain. This allows watchdog_enable_all_cpus() and proc_watchdog_update() to handle such errors too. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
Move watchdog_disable_all_cpus() outside of the ifdef so that it is available if CONFIG_SYSCTL is not defined. This is preparation for "watchdog: implement error handling in update_watchdog_all_cpus() and callers". Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
The original watchdog_park_threads() function that was introduced by commit 81a4beef ("watchdog: introduce watchdog_park_threads() and watchdog_unpark_threads()") takes a very simple approach to handle errors returned by kthread_park(): It attempts to roll back all watchdog threads to the unparked state. However, this may be undesired behaviour from the perspective of the caller which may want to handle errors as appropriate in its specific context. Currently, there are two possible call chains: - watchdog suspend/resume interface lockup_detector_suspend watchdog_park_threads - write to parameters in /proc/sys/kernel proc_watchdog_update watchdog_enable_all_cpus update_watchdog_all_cpus watchdog_park_threads Instead of 'blindly' attempting to unpark the watchdog threads if a kthread_park() call fails, the new approach is to disable the lockup detectors in the above call chains. Failure becomes visible to the user as follows: - error messages from lockup_detector_suspend() or watchdog_enable_all_cpus() - the state that can be read from /proc/sys/kernel/watchdog_enabled - the 'write' system call in the latter call chain returns an error I did not experience kthread_park() failures in practice, I used some instrumentation to fake error returns from kthread_park() in order to test the patches. This patch (of 5): Restore the previous value of watchdog_thresh _and_ sample_period if proc_watchdog_update() returns an error. The variables must be consistent to avoid false positives of the lockup detectors. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yaowei Bai 提交于
Make is_hardlockup return bool to improve readability due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by: NYaowei Bai <bywxiaobai@163.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Acked-by: NDon Zickus <dzickus@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 9月, 2015 8 次提交
-
-
由 Ulrich Obergfell 提交于
Rename watchdog_suspend() to lockup_detector_suspend() and watchdog_resume() to lockup_detector_resume() to avoid confusion with the watchdog subsystem and to be consistent with the existing name lockup_detector_init(). Also provide comment blocks to explain the watchdog_running and watchdog_suspended variables and their relationship. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Stephane Eranian <eranian@google.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
Remove watchdog_nmi_disable_all() and watchdog_nmi_enable_all() since these functions are no longer needed. If a subsystem has a need to deactivate the watchdog temporarily, it should utilize the watchdog_suspend() and watchdog_resume() functions. [akpm@linux-foundation.org: fix build with CONFIG_LOCKUP_DETECTOR=m] Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Stephane Eranian <eranian@google.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
Remove update_watchdog() and restart_watchdog_hrtimer() since these functions are no longer needed. Changes of parameters such as the sample period are honored at the time when the watchdog threads are being unparked. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Stephane Eranian <eranian@google.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
This interface can be utilized to deactivate the hard and soft lockup detector temporarily. Callers are expected to minimize the duration of deactivation. Multiple deactivations are allowed to occur in parallel but should be rare in practice. [akpm@linux-foundation.org: remove unneeded static initialization] Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Stephane Eranian <eranian@google.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Obergfell 提交于
Originally watchdog_nmi_enable(cpu) and watchdog_nmi_disable(cpu) were only called in watchdog thread context. However, the following commits utilize these functions outside of watchdog thread context too. commit 9809b18f Author: Michal Hocko <mhocko@suse.cz> Date: Tue Sep 24 15:27:30 2013 -0700 watchdog: update watchdog_thresh properly commit b3738d29 Author: Stephane Eranian <eranian@google.com> Date: Mon Nov 17 20:07:03 2014 +0100 watchdog: Add watchdog enable/disable all functions Hence, it is now possible that these functions execute concurrently with the same 'cpu' argument. This concurrency is problematic because per-cpu 'watchdog_ev' can be accessed/modified without adequate synchronization. The patch series aims to address the above problem. However, instead of introducing locks to protect per-cpu 'watchdog_ev' a different approach is taken: Invoke these functions by parking and unparking the watchdog threads (to ensure they are always called in watchdog thread context). static struct smp_hotplug_thread watchdog_threads = { ... .park = watchdog_disable, // calls watchdog_nmi_disable() .unpark = watchdog_enable, // calls watchdog_nmi_enable() }; Both previously mentioned commits call these functions in a similar way and thus in principle contain some duplicate code. The patch series also avoids this duplication by providing a commonly usable mechanism. - Patch 1/4 introduces the watchdog_{park|unpark}_threads functions that park/unpark all watchdog threads specified in 'watchdog_cpumask'. They are intended to be called inside of kernel/watchdog.c only. - Patch 2/4 introduces the watchdog_{suspend|resume} functions which can be utilized by external callers to deactivate the hard and soft lockup detector temporarily. - Patch 3/4 utilizes watchdog_{park|unpark}_threads to replace some code that was introduced by commit 9809b18f. - Patch 4/4 utilizes watchdog_{suspend|resume} to replace some code that was introduced by commit b3738d29. A few corner cases should be mentioned here for completeness. - kthread_park() of watchdog/N could hang if cpu N is already locked up. However, if watchdog is enabled the lockup will be detected anyway. - kthread_unpark() of watchdog/N could hang if cpu N got locked up after kthread_park(). The occurrence of this scenario should be _very_ rare in practice, in particular because it is not expected that temporary deactivation will happen frequently, and if it happens at all it is expected that the duration of deactivation will be short. This patch (of 4): introduce watchdog_park_threads() and watchdog_unpark_threads() These functions are intended to be used only from inside kernel/watchdog.c to park/unpark all watchdog threads that are specified in watchdog_cpumask. Signed-off-by: NUlrich Obergfell <uobergfe@redhat.com> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Stephane Eranian <eranian@google.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Guenter Roeck 提交于
The kernel's NMI watchdog has nothing to do with the watchdog subsystem. Its header declarations should be in linux/nmi.h, not linux/watchdog.h. The code provided two sets of dummy functions if HARDLOCKUP_DETECTOR is not configured, one in the include file and one in kernel/watchdog.c. Remove the dummy functions from kernel/watchdog.c and use those from the include file. Signed-off-by: NGuenter Roeck <linux@roeck-us.net> Cc: Stephane Eranian <eranian@google.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Don Zickus <dzickus@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Frederic Weisbecker 提交于
housekeeping_mask gathers all the CPUs that aren't part of the nohz_full set. This is exactly what we want the watchdog to be affine to without the need to use complicated cpumask operations. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Reviewed-by: NChris Metcalf <cmetcalf@ezchip.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Frederic Weisbecker 提交于
It makes the registration cheaper and simpler for the smpboot per-cpu kthread users that don't need to always update the cpumask after threads creation. [sfr@canb.auug.org.au: fix for allow passing the cpumask on per-cpu thread registration] Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Reviewed-by: NChris Metcalf <cmetcalf@ezchip.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 6月, 2015 1 次提交
-
-
由 Chris Metcalf 提交于
Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: NChris Metcalf <cmetcalf@ezchip.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NJohn Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 5月, 2015 1 次提交
-
-
由 Michal Hocko 提交于
Commit ab992dc3 ("watchdog: Fix merge 'conflict'") has introduced an obvious deadlock because of a typo. watchdog_proc_mutex should be unlocked on exit. Thanks to Miroslav Benes who was staring at the code with me and noticed this. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Duh-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-