1. 15 6月, 2011 2 次提交
    • V
      tracing: Use NUMA allocation for per-cpu ring buffer pages · 7ea59064
      Vaibhav Nagarnaik 提交于
      The tracing ring buffer is a group of per-cpu ring buffers where
      allocation and logging is done on a per-cpu basis. The events that are
      generated on a particular CPU are logged in the corresponding buffer.
      This is to provide wait-free writes between CPUs and good NUMA node
      locality while accessing the ring buffer.
      
      However, the allocation routines consider NUMA locality only for buffer
      page metadata and not for the actual buffer page. This causes the pages
      to be allocated on the NUMA node local to the CPU where the allocation
      routine is running at the time.
      
      This patch fixes the problem by using a NUMA node specific allocation
      routine so that the pages are allocated from a NUMA node local to the
      logging CPU.
      
      I tested with the getuid_microbench from autotest. It is a simple binary
      that calls getuid() in a loop and measures the average time for the
      syscall to complete. The following command was used to test:
      $ getuid_microbench 1000000
      
      Compared the numbers found on kernel with and without this patch and
      found that logging latency decreases by 30-50 ns/call.
      tracing with non-NUMA allocation - 569 ns/call
      tracing with NUMA allocation     - 512 ns/call
      Signed-off-by: NVaibhav Nagarnaik <vnagarnaik@google.com>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Michael Rubin <mrubin@google.com>
      Cc: David Sharp <dhsharp@google.com>
      Link: http://lkml.kernel.org/r/1304470602-20366-1-git-send-email-vnagarnaik@google.comSigned-off-by: NSteven Rostedt <rostedt@goodmis.org>
      7ea59064
    • V
      tracing: Schedule a delayed work to call wakeup() · e7e2ee89
      Vaibhav Nagarnaik 提交于
      In using syscall tracing by concurrent processes, the wakeup() that is
      called in the event commit function causes contention on the spin lock
      of the waitqueue. I enabled sys_enter_getuid and sys_exit_getuid
      tracepoints, and by running getuid_microbench from autotest in parallel
      I found that the contention causes exponential latency increase in the
      tracing path.
      
      The autotest binary getuid_microbench calls getuid() in a tight loop for
      the given number of iterations and measures the average time required to
      complete a single invocation of syscall.
      
      The patch schedules a delayed work after 2 ms once an event commit calls
      to wake up the trace wait_queue. This removes the delay caused by
      contention on spin lock in wakeup() and amortizes the wakeup() calls
      scheduled over the 2 ms period.
      
      In the following example, the script enables the sys_enter_getuid and
      sys_exit_getuid tracepoints and runs the getuid_microbench in parallel
      with the given number of processes. The output clearly shows the latency
      increase caused by contentions.
      
      $ ~/getuid.sh 1
      1000000 calls in 0.720974253 s (720.974253 ns/call)
      
      $ ~/getuid.sh 2
      1000000 calls in 1.166457554 s (1166.457554 ns/call)
      1000000 calls in 1.168933765 s (1168.933765 ns/call)
      
      $ ~/getuid.sh 3
      1000000 calls in 1.783827516 s (1783.827516 ns/call)
      1000000 calls in 1.795553270 s (1795.553270 ns/call)
      1000000 calls in 1.796493376 s (1796.493376 ns/call)
      
      $ ~/getuid.sh 4
      1000000 calls in 4.483041796 s (4483.041796 ns/call)
      1000000 calls in 4.484165388 s (4484.165388 ns/call)
      1000000 calls in 4.484850762 s (4484.850762 ns/call)
      1000000 calls in 4.485643576 s (4485.643576 ns/call)
      
      $ ~/getuid.sh 5
      1000000 calls in 6.497521653 s (6497.521653 ns/call)
      1000000 calls in 6.502000236 s (6502.000236 ns/call)
      1000000 calls in 6.501709115 s (6501.709115 ns/call)
      1000000 calls in 6.502124100 s (6502.124100 ns/call)
      1000000 calls in 6.502936358 s (6502.936358 ns/call)
      
      After the patch, the latencies scale better.
      1000000 calls in 0.728720455 s (728.720455 ns/call)
      
      1000000 calls in 0.842782857 s (842.782857 ns/call)
      1000000 calls in 0.883803135 s (883.803135 ns/call)
      
      1000000 calls in 0.902077764 s (902.077764 ns/call)
      1000000 calls in 0.902838202 s (902.838202 ns/call)
      1000000 calls in 0.908896885 s (908.896885 ns/call)
      
      1000000 calls in 0.932523515 s (932.523515 ns/call)
      1000000 calls in 0.958009672 s (958.009672 ns/call)
      1000000 calls in 0.986188020 s (986.188020 ns/call)
      1000000 calls in 0.989771102 s (989.771102 ns/call)
      
      1000000 calls in 0.933518391 s (933.518391 ns/call)
      1000000 calls in 0.958897947 s (958.897947 ns/call)
      1000000 calls in 1.031038897 s (1031.038897 ns/call)
      1000000 calls in 1.089516025 s (1089.516025 ns/call)
      1000000 calls in 1.141998347 s (1141.998347 ns/call)
      Signed-off-by: NVaibhav Nagarnaik <vnagarnaik@google.com>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Michael Rubin <mrubin@google.com>
      Cc: David Sharp <dhsharp@google.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Link: http://lkml.kernel.org/r/1305059241-7629-1-git-send-email-vnagarnaik@google.comSigned-off-by: NSteven Rostedt <rostedt@goodmis.org>
      e7e2ee89
  2. 07 6月, 2011 1 次提交
  3. 04 6月, 2011 1 次提交
  4. 31 5月, 2011 2 次提交
  5. 30 5月, 2011 1 次提交
    • L
      mm: Fix boot crash in mm_alloc() · 6345d24d
      Linus Torvalds 提交于
      Thomas Gleixner reports that we now have a boot crash triggered by
      CONFIG_CPUMASK_OFFSTACK=y:
      
          BUG: unable to handle kernel NULL pointer dereference at   (null)
          IP: [<c11ae035>] find_next_bit+0x55/0xb0
          Call Trace:
           [<c11addda>] cpumask_any_but+0x2a/0x70
           [<c102396b>] flush_tlb_mm+0x2b/0x80
           [<c1022705>] pud_populate+0x35/0x50
           [<c10227ba>] pgd_alloc+0x9a/0xf0
           [<c103a3fc>] mm_init+0xec/0x120
           [<c103a7a3>] mm_alloc+0x53/0xd0
      
      which was introduced by commit de03c72c ("mm: convert
      mm->cpu_vm_cpumask into cpumask_var_t"), and is due to wrong ordering of
      mm_init() vs mm_init_cpumask
      
      Thomas wrote a patch to just fix the ordering of initialization, but I
      hate the new double allocation in the fork path, so I ended up instead
      doing some more radical surgery to clean it all up.
      Reported-by: NThomas Gleixner <tglx@linutronix.de>
      Reported-by: NIngo Molnar <mingo@elte.hu>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6345d24d
  6. 29 5月, 2011 10 次提交
  7. 28 5月, 2011 8 次提交
    • P
      rcu: Start RCU kthreads in TASK_INTERRUPTIBLE state · cc3ce517
      Paul E. McKenney 提交于
      Upon creation, kthreads are in TASK_UNINTERRUPTIBLE state, which can
      result in softlockup warnings.  Because some of RCU's kthreads can
      legitimately be idle indefinitely, start them in TASK_INTERRUPTIBLE
      state in order to avoid those warnings.
      Suggested-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Tested-by: NYinghai Lu <yinghai@kernel.org>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      cc3ce517
    • P
      rcu: Remove waitqueue usage for cpu, node, and boost kthreads · 08bca60a
      Peter Zijlstra 提交于
      It is not necessary to use waitqueues for the RCU kthreads because
      we always know exactly which thread is to be awakened.  In addition,
      wake_up() only issues an actual wakeup when there is a thread waiting on
      the queue, which was why there was an extra explicit wake_up_process()
      to get the RCU kthreads started.
      
      Eliminating the waitqueues (and wake_up()) in favor of wake_up_process()
      eliminates the need for the initial wake_up_process() and also shrinks
      the data structure size a bit.  The wakeup logic is placed in a new
      rcu_wait() macro.
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      08bca60a
    • P
      rcu: Avoid acquiring rcu_node locks in timer functions · 8826f3b0
      Paul E. McKenney 提交于
      This commit switches manipulations of the rcu_node ->wakemask field
      to atomic operations, which allows rcu_cpu_kthread_timer() to avoid
      acquiring the rcu_node lock.  This should avoid the following lockdep
      splat reported by Valdis Kletnieks:
      
      [   12.872150] usb 1-4: new high speed USB device number 3 using ehci_hcd
      [   12.986667] usb 1-4: New USB device found, idVendor=413c, idProduct=2513
      [   12.986679] usb 1-4: New USB device strings: Mfr=0, Product=0, SerialNumber=0
      [   12.987691] hub 1-4:1.0: USB hub found
      [   12.987877] hub 1-4:1.0: 3 ports detected
      [   12.996372] input: PS/2 Generic Mouse as /devices/platform/i8042/serio1/input/input10
      [   13.071471] udevadm used greatest stack depth: 3984 bytes left
      [   13.172129]
      [   13.172130] =======================================================
      [   13.172425] [ INFO: possible circular locking dependency detected ]
      [   13.172650] 2.6.39-rc6-mmotm0506 #1
      [   13.172773] -------------------------------------------------------
      [   13.172997] blkid/267 is trying to acquire lock:
      [   13.173009]  (&p->pi_lock){-.-.-.}, at: [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa
      [   13.173009]
      [   13.173009] but task is already holding lock:
      [   13.173009]  (rcu_node_level_0){..-...}, at: [<ffffffff810901cc>] rcu_cpu_kthread_timer+0x27/0x58
      [   13.173009]
      [   13.173009] which lock already depends on the new lock.
      [   13.173009]
      [   13.173009]
      [   13.173009] the existing dependency chain (in reverse order) is:
      [   13.173009]
      [   13.173009] -> #2 (rcu_node_level_0){..-...}:
      [   13.173009]        [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
      [   13.173009]        [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
      [   13.173009]        [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
      [   13.173009]        [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
      [   13.173009]        [<ffffffff815697f1>] _raw_spin_lock+0x36/0x45
      [   13.173009]        [<ffffffff81090794>] rcu_read_unlock_special+0x8c/0x1d5
      [   13.173009]        [<ffffffff8109092c>] __rcu_read_unlock+0x4f/0xd7
      [   13.173009]        [<ffffffff81027bd3>] rcu_read_unlock+0x21/0x23
      [   13.173009]        [<ffffffff8102cc34>] cpuacct_charge+0x6c/0x75
      [   13.173009]        [<ffffffff81030cc6>] update_curr+0x101/0x12e
      [   13.173009]        [<ffffffff810311d0>] check_preempt_wakeup+0xf7/0x23b
      [   13.173009]        [<ffffffff8102acb3>] check_preempt_curr+0x2b/0x68
      [   13.173009]        [<ffffffff81031d40>] ttwu_do_wakeup+0x76/0x128
      [   13.173009]        [<ffffffff81031e49>] ttwu_do_activate.constprop.63+0x57/0x5c
      [   13.173009]        [<ffffffff81031e96>] scheduler_ipi+0x48/0x5d
      [   13.173009]        [<ffffffff810177d5>] smp_reschedule_interrupt+0x16/0x18
      [   13.173009]        [<ffffffff815710f3>] reschedule_interrupt+0x13/0x20
      [   13.173009]        [<ffffffff810b66d1>] rcu_read_unlock+0x21/0x23
      [   13.173009]        [<ffffffff810b739c>] find_get_page+0xa9/0xb9
      [   13.173009]        [<ffffffff810b8b48>] filemap_fault+0x6a/0x34d
      [   13.173009]        [<ffffffff810d1a25>] __do_fault+0x54/0x3e6
      [   13.173009]        [<ffffffff810d447a>] handle_pte_fault+0x12c/0x1ed
      [   13.173009]        [<ffffffff810d48f7>] handle_mm_fault+0x1cd/0x1e0
      [   13.173009]        [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de
      [   13.173009]        [<ffffffff8156a75f>] page_fault+0x1f/0x30
      [   13.173009]
      [   13.173009] -> #1 (&rq->lock){-.-.-.}:
      [   13.173009]        [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
      [   13.173009]        [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
      [   13.173009]        [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
      [   13.173009]        [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
      [   13.173009]        [<ffffffff815697f1>] _raw_spin_lock+0x36/0x45
      [   13.173009]        [<ffffffff81027e19>] __task_rq_lock+0x8b/0xd3
      [   13.173009]        [<ffffffff81032f7f>] wake_up_new_task+0x41/0x108
      [   13.173009]        [<ffffffff810376c3>] do_fork+0x265/0x33f
      [   13.173009]        [<ffffffff81007d02>] kernel_thread+0x6b/0x6d
      [   13.173009]        [<ffffffff8153a9dd>] rest_init+0x21/0xd2
      [   13.173009]        [<ffffffff81b1db4f>] start_kernel+0x3bb/0x3c6
      [   13.173009]        [<ffffffff81b1d29f>] x86_64_start_reservations+0xaf/0xb3
      [   13.173009]        [<ffffffff81b1d393>] x86_64_start_kernel+0xf0/0xf7
      [   13.173009]
      [   13.173009] -> #0 (&p->pi_lock){-.-.-.}:
      [   13.173009]        [<ffffffff81067788>] check_prev_add+0x68/0x20e
      [   13.173009]        [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
      [   13.173009]        [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
      [   13.173009]        [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
      [   13.173009]        [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
      [   13.173009]        [<ffffffff815698ea>] _raw_spin_lock_irqsave+0x44/0x57
      [   13.173009]        [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa
      [   13.173009]        [<ffffffff81032f3c>] wake_up_process+0x10/0x12
      [   13.173009]        [<ffffffff810901e9>] rcu_cpu_kthread_timer+0x44/0x58
      [   13.173009]        [<ffffffff81045286>] call_timer_fn+0xac/0x1e9
      [   13.173009]        [<ffffffff8104556d>] run_timer_softirq+0x1aa/0x1f2
      [   13.173009]        [<ffffffff8103e487>] __do_softirq+0x109/0x26a
      [   13.173009]        [<ffffffff8157144c>] call_softirq+0x1c/0x30
      [   13.173009]        [<ffffffff81003207>] do_softirq+0x44/0xf1
      [   13.173009]        [<ffffffff8103e8b9>] irq_exit+0x58/0xc8
      [   13.173009]        [<ffffffff81017f5a>] smp_apic_timer_interrupt+0x79/0x87
      [   13.173009]        [<ffffffff81570fd3>] apic_timer_interrupt+0x13/0x20
      [   13.173009]        [<ffffffff810bd51a>] get_page_from_freelist+0x2aa/0x310
      [   13.173009]        [<ffffffff810bdf03>] __alloc_pages_nodemask+0x178/0x243
      [   13.173009]        [<ffffffff8101fe2f>] pte_alloc_one+0x1e/0x3a
      [   13.173009]        [<ffffffff810d27fe>] __pte_alloc+0x22/0x14b
      [   13.173009]        [<ffffffff810d48a8>] handle_mm_fault+0x17e/0x1e0
      [   13.173009]        [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de
      [   13.173009]        [<ffffffff8156a75f>] page_fault+0x1f/0x30
      [   13.173009]
      [   13.173009] other info that might help us debug this:
      [   13.173009]
      [   13.173009] Chain exists of:
      [   13.173009]   &p->pi_lock --> &rq->lock --> rcu_node_level_0
      [   13.173009]
      [   13.173009]  Possible unsafe locking scenario:
      [   13.173009]
      [   13.173009]        CPU0                    CPU1
      [   13.173009]        ----                    ----
      [   13.173009]   lock(rcu_node_level_0);
      [   13.173009]                                lock(&rq->lock);
      [   13.173009]                                lock(rcu_node_level_0);
      [   13.173009]   lock(&p->pi_lock);
      [   13.173009]
      [   13.173009]  *** DEADLOCK ***
      [   13.173009]
      [   13.173009] 3 locks held by blkid/267:
      [   13.173009]  #0:  (&mm->mmap_sem){++++++}, at: [<ffffffff8156cdb4>] do_page_fault+0x1f3/0x5de
      [   13.173009]  #1:  (&yield_timer){+.-...}, at: [<ffffffff810451da>] call_timer_fn+0x0/0x1e9
      [   13.173009]  #2:  (rcu_node_level_0){..-...}, at: [<ffffffff810901cc>] rcu_cpu_kthread_timer+0x27/0x58
      [   13.173009]
      [   13.173009] stack backtrace:
      [   13.173009] Pid: 267, comm: blkid Not tainted 2.6.39-rc6-mmotm0506 #1
      [   13.173009] Call Trace:
      [   13.173009]  <IRQ>  [<ffffffff8154a529>] print_circular_bug+0xc8/0xd9
      [   13.173009]  [<ffffffff81067788>] check_prev_add+0x68/0x20e
      [   13.173009]  [<ffffffff8100c861>] ? save_stack_trace+0x28/0x46
      [   13.173009]  [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
      [   13.173009]  [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
      [   13.173009]  [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
      [   13.173009]  [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa
      [   13.173009]  [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
      [   13.173009]  [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa
      [   13.173009]  [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
      [   13.173009]  [<ffffffff815698ea>] _raw_spin_lock_irqsave+0x44/0x57
      [   13.173009]  [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa
      [   13.173009]  [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa
      [   13.173009]  [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
      [   13.173009]  [<ffffffff81032f3c>] wake_up_process+0x10/0x12
      [   13.173009]  [<ffffffff810901e9>] rcu_cpu_kthread_timer+0x44/0x58
      [   13.173009]  [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
      [   13.173009]  [<ffffffff81045286>] call_timer_fn+0xac/0x1e9
      [   13.173009]  [<ffffffff810451da>] ? del_timer+0x75/0x75
      [   13.173009]  [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
      [   13.173009]  [<ffffffff8104556d>] run_timer_softirq+0x1aa/0x1f2
      [   13.173009]  [<ffffffff8103e487>] __do_softirq+0x109/0x26a
      [   13.173009]  [<ffffffff8106365f>] ? tick_dev_program_event+0x37/0xf6
      [   13.173009]  [<ffffffff810a0e4a>] ? time_hardirqs_off+0x1b/0x2f
      [   13.173009]  [<ffffffff8157144c>] call_softirq+0x1c/0x30
      [   13.173009]  [<ffffffff81003207>] do_softirq+0x44/0xf1
      [   13.173009]  [<ffffffff8103e8b9>] irq_exit+0x58/0xc8
      [   13.173009]  [<ffffffff81017f5a>] smp_apic_timer_interrupt+0x79/0x87
      [   13.173009]  [<ffffffff81570fd3>] apic_timer_interrupt+0x13/0x20
      [   13.173009]  <EOI>  [<ffffffff810bd384>] ? get_page_from_freelist+0x114/0x310
      [   13.173009]  [<ffffffff810bd51a>] ? get_page_from_freelist+0x2aa/0x310
      [   13.173009]  [<ffffffff812220e7>] ? clear_page_c+0x7/0x10
      [   13.173009]  [<ffffffff810bd1ef>] ? prep_new_page+0x14c/0x1cd
      [   13.173009]  [<ffffffff810bd51a>] get_page_from_freelist+0x2aa/0x310
      [   13.173009]  [<ffffffff810bdf03>] __alloc_pages_nodemask+0x178/0x243
      [   13.173009]  [<ffffffff810d46b9>] ? __pmd_alloc+0x87/0x99
      [   13.173009]  [<ffffffff8101fe2f>] pte_alloc_one+0x1e/0x3a
      [   13.173009]  [<ffffffff810d46b9>] ? __pmd_alloc+0x87/0x99
      [   13.173009]  [<ffffffff810d27fe>] __pte_alloc+0x22/0x14b
      [   13.173009]  [<ffffffff810d48a8>] handle_mm_fault+0x17e/0x1e0
      [   13.173009]  [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de
      [   13.173009]  [<ffffffff810d915f>] ? sys_brk+0x32/0x10c
      [   13.173009]  [<ffffffff810a0e4a>] ? time_hardirqs_off+0x1b/0x2f
      [   13.173009]  [<ffffffff81065c4f>] ? trace_hardirqs_off_caller+0x3f/0x9c
      [   13.173009]  [<ffffffff812235dd>] ? trace_hardirqs_off_thunk+0x3a/0x3c
      [   13.173009]  [<ffffffff8156a75f>] page_fault+0x1f/0x30
      [   14.010075] usb 5-1: new full speed USB device number 2 using uhci_hcd
      Reported-by: NValdis Kletnieks <Valdis.Kletnieks@vt.edu>
      Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      8826f3b0
    • P
      perf: Fix SIGIO handling · f506b3dc
      Peter Zijlstra 提交于
      Vince noticed that unless we mmap() a buffer, SIGIO gets lost. So
      explicitly push the wakeup (including signals) when requested.
      Reported-by: NVince Weaver <vweaver1@eecs.utk.edu>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: <stable@kernel.org>
      Link: http://lkml.kernel.org/n/tip-2euus3f3x3dyvdk52cjxw8zu@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
      f506b3dc
    • K
      cpuset: Fix cpuset_cpus_allowed_fallback(), don't update tsk->rt.nr_cpus_allowed · 1e1b6c51
      KOSAKI Motohiro 提交于
      The rule is, we have to update tsk->rt.nr_cpus_allowed if we change
      tsk->cpus_allowed. Otherwise RT scheduler may confuse.
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Link: http://lkml.kernel.org/r/4DD4B3FA.5060901@jp.fujitsu.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
      1e1b6c51
    • P
      sched: Fix ->min_vruntime calculation in dequeue_entity() · 1e876231
      Peter Zijlstra 提交于
      Dima Zavin <dima@android.com> reported:
      
      "After pulling the thread off the run-queue during a cgroup change,
      the cfs_rq.min_vruntime gets recalculated. The dequeued thread's vruntime
      then gets normalized to this new value. This can then lead to the thread
      getting an unfair boost in the new group if the vruntime of the next
      task in the old run-queue was way further ahead."
      Reported-by: NDima Zavin <dima@android.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      Recalls-having-tested-once-upon-a-time-by: NMike Galbraith <efault@gmx.de>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Link: http://lkml.kernel.org/r/1305674470-23727-1-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
      1e876231
    • P
      sched: Fix ttwu() for __ARCH_WANT_INTERRUPTS_ON_CTXSW · d6aa8f85
      Peter Zijlstra 提交于
      Marc reported that e4a52bcb (sched: Remove rq->lock from the first
      half of ttwu()) broke his ARM-SMP machine. Now ARM is one of the few
      __ARCH_WANT_INTERRUPTS_ON_CTXSW users, so that exception in the ttwu()
      code was suspect.
      
      Yong found that the interrupt could hit after context_switch() changes
      current but before it clears p->on_cpu, if that interrupt were to
      attempt a wake-up of p we would indeed find ourselves spinning in IRQ
      context.
      
      Fix this by reverting to the old behaviour for this situation and
      perform a full remote wake-up.
      
      Cc: Frank Rowand <frank.rowand@am.sony.com>
      Cc: Yong Zhang <yong.zhang0@gmail.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Reported-by: NMarc Zyngier <Marc.Zyngier@arm.com>
      Tested-by: NMarc Zyngier <marc.zyngier@arm.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      d6aa8f85
    • X
      sched: More sched_domain iterations fixes · cd4ae6ad
      Xiaotian Feng 提交于
      sched_domain iterations needs to be protected by rcu_read_lock() now,
      this patch adds another two places which needs the rcu lock, which is
      spotted by following suspicious rcu_dereference_check() usage warnings.
      
      kernel/sched_rt.c:1244 invoked rcu_dereference_check() without protection!
      kernel/sched_stats.h:41 invoked rcu_dereference_check() without protection!
      Signed-off-by: NXiaotian Feng <dfeng@redhat.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Link: http://lkml.kernel.org/r/1303469634-11678-1-git-send-email-dfeng@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
      cd4ae6ad
  8. 27 5月, 2011 13 次提交
    • R
      kernel/profile.c: remove some duplicate code from profile_hits() · 6f7bd76f
      Rakib Mullick 提交于
      profile_hits() has a common check for prof_on and prof_buffer regardless
      of SMP or !SMP.  So, remove some duplicate code by splitting profile_hits
      into two.
      
      [akpm@linux-foundation.org: make do_profile_hits static]
      Signed-off-by: NRakib Mullick <rakib.mullick@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6f7bd76f
    • J
      mm: extract exe_file handling from procfs · 38646013
      Jiri Slaby 提交于
      Setup and cleanup of mm_struct->exe_file is currently done in fs/proc/.
      This was because exe_file was needed only for /proc/<pid>/exe.  Since we
      will need the exe_file functionality also for core dumps (so core name can
      contain full binary path), built this functionality always into the
      kernel.
      
      To achieve that move that out of proc FS to the kernel/ where in fact it
      should belong.  By doing that we can make dup_mm_exe_file static.  Also we
      can drop linux/proc_fs.h inclusion in fs/exec.c and kernel/fork.c.
      Signed-off-by: NJiri Slaby <jslaby@suse.cz>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      38646013
    • D
      cgroup: remove the ns_cgroup · a77aea92
      Daniel Lezcano 提交于
      The ns_cgroup is an annoying cgroup at the namespace / cgroup frontier and
      leads to some problems:
      
        * cgroup creation is out-of-control
        * cgroup name can conflict when pids are looping
        * it is not possible to have a single process handling a lot of
          namespaces without falling in a exponential creation time
        * we may want to create a namespace without creating a cgroup
      
        The ns_cgroup was replaced by a compatibility flag 'clone_children',
        where a newly created cgroup will copy the parent cgroup values.
        The userspace has to manually create a cgroup and add a task to
        the 'tasks' file.
      
      This patch removes the ns_cgroup as suggested in the following thread:
      
      https://lists.linux-foundation.org/pipermail/containers/2009-June/018616.html
      
      The 'cgroup_clone' function is removed because it is no longer used.
      
      This is a userspace-visible change.  Commit 45531757 ("cgroup: notify
      ns_cgroup deprecated") (merged into 2.6.27) caused the kernel to emit a
      printk warning users that the feature is planned for removal.  Since that
      time we have heard from XXX users who were affected by this.
      Signed-off-by: NDaniel Lezcano <daniel.lezcano@free.fr>
      Signed-off-by: NSerge E. Hallyn <serge.hallyn@canonical.com>
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: Jamal Hadi Salim <hadi@cyberus.ca>
      Reviewed-by: NLi Zefan <lizf@cn.fujitsu.com>
      Acked-by: NPaul Menage <menage@google.com>
      Acked-by: NMatt Helsley <matthltc@us.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a77aea92
    • B
      cgroups: use flex_array in attach_proc · d846687d
      Ben Blum 提交于
      Convert cgroup_attach_proc to use flex_array.
      
      The cgroup_attach_proc implementation requires a pre-allocated array to
      store task pointers to atomically move a thread-group, but asking for a
      monolithic array with kmalloc() may be unreliable for very large groups.
      Using flex_array provides the same functionality with less risk of
      failure.
      
      This is a post-patch for cgroup-procs-write.patch.
      Signed-off-by: NBen Blum <bblum@andrew.cmu.edu>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Reviewed-by: NPaul Menage <menage@google.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Miao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d846687d
    • B
      cgroups: make procs file writable · 74a1166d
      Ben Blum 提交于
      Make procs file writable to move all threads by tgid at once.
      
      Add functionality that enables users to move all threads in a threadgroup
      at once to a cgroup by writing the tgid to the 'cgroup.procs' file.  This
      current implementation makes use of a per-threadgroup rwsem that's taken
      for reading in the fork() path to prevent newly forking threads within the
      threadgroup from "escaping" while the move is in progress.
      Signed-off-by: NBen Blum <bblum@andrew.cmu.edu>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Reviewed-by: NPaul Menage <menage@google.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Miao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      74a1166d
    • B
      cgroups: add per-thread subsystem callbacks · f780bdb7
      Ben Blum 提交于
      Add cgroup subsystem callbacks for per-thread attachment in atomic contexts
      
      Add can_attach_task(), pre_attach(), and attach_task() as new callbacks
      for cgroups's subsystem interface.  Unlike can_attach and attach, these
      are for per-thread operations, to be called potentially many times when
      attaching an entire threadgroup.
      
      Also, the old "bool threadgroup" interface is removed, as replaced by
      this.  All subsystems are modified for the new interface - of note is
      cpuset, which requires from/to nodemasks for attach to be globally scoped
      (though per-cpuset would work too) to persist from its pre_attach to
      attach_task and attach.
      
      This is a pre-patch for cgroup-procs-writable.patch.
      Signed-off-by: NBen Blum <bblum@andrew.cmu.edu>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Reviewed-by: NPaul Menage <menage@google.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Miao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f780bdb7
    • B
      cgroups: read-write lock CLONE_THREAD forking per threadgroup · 4714d1d3
      Ben Blum 提交于
      Adds functionality to read/write lock CLONE_THREAD fork()ing per-threadgroup
      
      Add an rwsem that lives in a threadgroup's signal_struct that's taken for
      reading in the fork path, under CONFIG_CGROUPS.  If another part of the
      kernel later wants to use such a locking mechanism, the CONFIG_CGROUPS
      ifdefs should be changed to a higher-up flag that CGROUPS and the other
      system would both depend on.
      
      This is a pre-patch for cgroup-procs-write.patch.
      Signed-off-by: NBen Blum <bblum@andrew.cmu.edu>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Reviewed-by: NPaul Menage <menage@google.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Miao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4714d1d3
    • R
      PM: Fix PM QOS's user mode interface to work with ASCII input · 0775a60a
      Rafael J. Wysocki 提交于
      Make pm_qos_power_write() accept values passed to it in the ASCII hex
      format either with or without an ending newline.
      Signed-off-by: NRafael J. Wysocki <rjw@sisk.pl>
      Acked-by: NMark Gross <markgross@thegnar.org>
      0775a60a
    • P
      rcu: Decrease memory-barrier usage based on semi-formal proof · 23b5c8fa
      Paul E. McKenney 提交于
      (Note: this was reverted, and is now being re-applied in pieces, with
      this being the fifth and final piece.  See below for the reason that
      it is now felt to be safe to re-apply this.)
      
      Commit d09b62df fixed grace-period synchronization, but left some smp_mb()
      invocations in rcu_process_callbacks() that are no longer needed, but
      sheer paranoia prevented them from being removed.  This commit removes
      them and provides a proof of correctness in their absence.  It also adds
      a memory barrier to rcu_report_qs_rsp() immediately before the update to
      rsp->completed in order to handle the theoretical possibility that the
      compiler or CPU might move massive quantities of code into a lock-based
      critical section.  This also proves that the sheer paranoia was not
      entirely unjustified, at least from a theoretical point of view.
      
      In addition, the old dyntick-idle synchronization depended on the fact
      that grace periods were many milliseconds in duration, so that it could
      be assumed that no dyntick-idle CPU could reorder a memory reference
      across an entire grace period.  Unfortunately for this design, the
      addition of expedited grace periods breaks this assumption, which has
      the unfortunate side-effect of requiring atomic operations in the
      functions that track dyntick-idle state for RCU.  (There is some hope
      that the algorithms used in user-level RCU might be applied here, but
      some work is required to handle the NMIs that user-space applications
      can happily ignore.  For the short term, better safe than sorry.)
      
      This proof assumes that neither compiler nor CPU will allow a lock
      acquisition and release to be reordered, as doing so can result in
      deadlock.  The proof is as follows:
      
      1.	A given CPU declares a quiescent state under the protection of
      	its leaf rcu_node's lock.
      
      2.	If there is more than one level of rcu_node hierarchy, the
      	last CPU to declare a quiescent state will also acquire the
      	->lock of the next rcu_node up in the hierarchy,  but only
      	after releasing the lower level's lock.  The acquisition of this
      	lock clearly cannot occur prior to the acquisition of the leaf
      	node's lock.
      
      3.	Step 2 repeats until we reach the root rcu_node structure.
      	Please note again that only one lock is held at a time through
      	this process.  The acquisition of the root rcu_node's ->lock
      	must occur after the release of that of the leaf rcu_node.
      
      4.	At this point, we set the ->completed field in the rcu_state
      	structure in rcu_report_qs_rsp().  However, if the rcu_node
      	hierarchy contains only one rcu_node, then in theory the code
      	preceding the quiescent state could leak into the critical
      	section.  We therefore precede the update of ->completed with a
      	memory barrier.  All CPUs will therefore agree that any updates
      	preceding any report of a quiescent state will have happened
      	before the update of ->completed.
      
      5.	Regardless of whether a new grace period is needed, rcu_start_gp()
      	will propagate the new value of ->completed to all of the leaf
      	rcu_node structures, under the protection of each rcu_node's ->lock.
      	If a new grace period is needed immediately, this propagation
      	will occur in the same critical section that ->completed was
      	set in, but courtesy of the memory barrier in #4 above, is still
      	seen to follow any pre-quiescent-state activity.
      
      6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
      	aware of the end of the old grace period and therefore makes
      	any RCU callbacks that were waiting on that grace period eligible
      	for invocation.
      
      	If this CPU is the same one that detected the end of the grace
      	period, and if there is but a single rcu_node in the hierarchy,
      	we will still be in the single critical section.  In this case,
      	the memory barrier in step #4 guarantees that all callbacks will
      	be seen to execute after each CPU's quiescent state.
      
      	On the other hand, if this is a different CPU, it will acquire
      	the leaf rcu_node's ->lock, and will again be serialized after
      	each CPU's quiescent state for the old grace period.
      
      On the strength of this proof, this commit therefore removes the memory
      barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
      The effect is to reduce the number of memory barriers by one and to
      reduce the frequency of execution from about once per scheduling tick
      per CPU to once per grace period.
      
      This was reverted do to hangs found during testing by Yinghai Lu and
      Ingo Molnar.  Frederic Weisbecker supplied Yinghai with tracing that
      located the underlying problem, and Frederic also provided the fix.
      
      The underlying problem was that the HARDIRQ_ENTER() macro from
      lib/locking-selftest.c invoked irq_enter(), which in turn invokes
      rcu_irq_enter(), but HARDIRQ_EXIT() invoked __irq_exit(), which
      does not invoke rcu_irq_exit().  This situation resulted in calls
      to rcu_irq_enter() that were not balanced by the required calls to
      rcu_irq_exit().  Therefore, after these locking selftests completed,
      RCU's dyntick-idle nesting count was a large number (for example,
      72), which caused RCU to to conclude that the affected CPU was not in
      dyntick-idle mode when in fact it was.
      
      RCU would therefore incorrectly wait for this dyntick-idle CPU, resulting
      in hangs.
      
      In contrast, with Frederic's patch, which replaces the irq_enter()
      in HARDIRQ_ENTER() with an __irq_enter(), these tests don't ever call
      either rcu_irq_enter() or rcu_irq_exit(), which works because the CPU
      running the test is already marked as not being in dyntick-idle mode.
      This means that the rcu_irq_enter() and rcu_irq_exit() calls and RCU
      then has no problem working out which CPUs are in dyntick-idle mode and
      which are not.
      
      The reason that the imbalance was not noticed before the barrier patch
      was applied is that the old implementation of rcu_enter_nohz() ignored
      the nesting depth.  This could still result in delays, but much shorter
      ones.  Whenever there was a delay, RCU would IPI the CPU with the
      unbalanced nesting level, which would eventually result in rcu_enter_nohz()
      being called, which in turn would force RCU to see that the CPU was in
      dyntick-idle mode.
      
      The reason that very few people noticed the problem is that the mismatched
      irq_enter() vs. __irq_exit() occured only when the kernel was built with
      CONFIG_DEBUG_LOCKING_API_SELFTESTS.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
      23b5c8fa
    • P
      rcu: Make rcu_enter_nohz() pay attention to nesting · 4305ce78
      Paul E. McKenney 提交于
      The old version of rcu_enter_nohz() forced RCU into nohz mode even if
      the nesting count was non-zero.  This change causes rcu_enter_nohz()
      to hold off for non-zero nesting counts.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      4305ce78
    • P
      rcu: Don't do reschedule unless in irq · b5904090
      Paul E. McKenney 提交于
      Condition the set_need_resched() in rcu_irq_exit() on in_irq().  This
      should be a no-op, because rcu_irq_exit() should only be called from irq.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      b5904090
    • P
      rcu: Remove old memory barriers from rcu_process_callbacks() · 1135633b
      Paul E. McKenney 提交于
      Second step of partitioning of commit e59fb312.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      1135633b
    • P
      rcu: Add memory barriers · 0bbcc529
      Paul E. McKenney 提交于
      Add the memory barriers added by e59fb312.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      0bbcc529
  9. 26 5月, 2011 2 次提交
    • Y
      irq: Remove smp_affinity_list when unregister irq proc · def945ee
      Yinghai Lu 提交于
      commit 4b060420(bitmap, irq: add smp_affinity_list interface to
      /proc/irq) causes the following warning:
      
      [  274.239500] WARNING: at fs/proc/generic.c:850 remove_proc_entry+0x24c/0x27a()
      [  274.251761] remove_proc_entry: removing non-empty directory 'irq/184',
          	       leaking at least 'smp_affinity_list'
      
      Remove the new file in the exit path.
      Signed-off-by: NYinghai Lu <yinghai@kernel.org>
      Cc: Mike Travis <travis@sgi.com>
      Link: http://lkml.kernel.org/r/4DDDE094.6050505@kernel.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      def945ee
    • S
      ftrace: Add internal recursive checks · b1cff0ad
      Steven Rostedt 提交于
      Witold reported a reboot caused by the selftests of the dynamic function
      tracer. He sent me a config and I used ktest to do a config_bisect on it
      (as my config did not cause the crash). It pointed out that the problem
      config was CONFIG_PROVE_RCU.
      
      What happened was that if multiple callbacks are attached to the
      function tracer, we iterate a list of callbacks. Because the list is
      managed by synchronize_sched() and preempt_disable, the access to the
      pointers uses rcu_dereference_raw().
      
      When PROVE_RCU is enabled, the rcu_dereference_raw() calls some
      debugging functions, which happen to be traced. The tracing of the debug
      function would then call rcu_dereference_raw() which would then call the
      debug function and then... well you get the idea.
      
      I first wrote two different patches to solve this bug.
      
      1) add a __rcu_dereference_raw() that would not do any checks.
      2) add notrace to the offending debug functions.
      
      Both of these patches worked.
      
      Talking with Paul McKenney on IRC, he suggested to add recursion
      detection instead. This seemed to be a better solution, so I decided to
      implement it. As the task_struct already has a trace_recursion to detect
      recursion in the ring buffer, and that has a very small number it
      allows, I decided to use that same variable to add flags that can detect
      the recursion inside the infrastructure of the function tracer.
      
      I plan to change it so that the task struct bit can be checked in
      mcount, but as that requires changes to all archs, I will hold that off
      to the next merge window.
      
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Link: http://lkml.kernel.org/r/1306348063.1465.116.camel@gandalf.stny.rr.comReported-by: NWitold Baryluk <baryluk@smp.if.uj.edu.pl>
      Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
      b1cff0ad