1. 25 6月, 2019 1 次提交
  2. 18 3月, 2018 1 次提交
  3. 15 11月, 2017 1 次提交
  4. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  5. 13 7月, 2017 1 次提交
    • M
      mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic · dcda9b04
      Michal Hocko 提交于
      __GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
      the page allocator.  This has been true but only for allocations
      requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
      ignored for smaller sizes.  This is a bit unfortunate because there is
      no way to express the same semantic for those requests and they are
      considered too important to fail so they might end up looping in the
      page allocator for ever, similarly to GFP_NOFAIL requests.
      
      Now that the whole tree has been cleaned up and accidental or misled
      usage of __GFP_REPEAT flag has been removed for !costly requests we can
      give the original flag a better name and more importantly a more useful
      semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
      that the allocator would try really hard but there is no promise of a
      success.  This will work independent of the order and overrides the
      default allocator behavior.  Page allocator users have several levels of
      guarantee vs.  cost options (take GFP_KERNEL as an example)
      
       - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
         attempt to free memory at all. The most light weight mode which even
         doesn't kick the background reclaim. Should be used carefully because
         it might deplete the memory and the next user might hit the more
         aggressive reclaim
      
       - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
         allocation without any attempt to free memory from the current
         context but can wake kswapd to reclaim memory if the zone is below
         the low watermark. Can be used from either atomic contexts or when
         the request is a performance optimization and there is another
         fallback for a slow path.
      
       - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
         non sleeping allocation with an expensive fallback so it can access
         some portion of memory reserves. Usually used from interrupt/bh
         context with an expensive slow path fallback.
      
       - GFP_KERNEL - both background and direct reclaim are allowed and the
         _default_ page allocator behavior is used. That means that !costly
         allocation requests are basically nofail but there is no guarantee of
         that behavior so failures have to be checked properly by callers
         (e.g. OOM killer victim is allowed to fail currently).
      
       - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
         and all allocation requests fail early rather than cause disruptive
         reclaim (one round of reclaim in this implementation). The OOM killer
         is not invoked.
      
       - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
         behavior and all allocation requests try really hard. The request
         will fail if the reclaim cannot make any progress. The OOM killer
         won't be triggered.
      
       - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
         and all allocation requests will loop endlessly until they succeed.
         This might be really dangerous especially for larger orders.
      
      Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
      because they already had their semantic.  No new users are added.
      __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
      there is no progress and we have already passed the OOM point.
      
      This means that all the reclaim opportunities have been exhausted except
      the most disruptive one (the OOM killer) and a user defined fallback
      behavior is more sensible than keep retrying in the page allocator.
      
      [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
      [mhocko@suse.com: semantic fix]
        Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
      [mhocko@kernel.org: address other thing spotted by Vlastimil]
        Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
      Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Alex Belits <alex.belits@cavium.com>
      Cc: Chris Wilson <chris@chris-wilson.co.uk>
      Cc: Christoph Hellwig <hch@infradead.org>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: David Daney <david.daney@cavium.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: NeilBrown <neilb@suse.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dcda9b04
  6. 26 6月, 2017 5 次提交
  7. 25 12月, 2016 1 次提交
  8. 25 10月, 2016 1 次提交
    • A
      sparc64: Setup a scheduling domain for highest level cache. · d624716b
      Atish Patra 提交于
      Individual scheduler domain should consist different hierarchy
      consisting of cores sharing similar property. Currently, no
      scheduler domain is defined separately for the cores that shares
      the last level cache. As a result, the scheduler fails to take
      advantage of cache locality while migrating tasks during load
      balancing.
      
      Here are the cpu masks currently present for sparc that are/can
      be used in scheduler domain construction.
      cpu_core_map : set based on the cores that shares l1 cache.
      core_core_sib_map : is set based on the socket id.
      The prior SPARC notion of socket was defined as highest level of
      shared cache. However, the MD record on T7 platforms now describes
      the CPUs that share the physical socket and this is no longer tied
      to shared cache.
      
      That's why a separate cpu mask needs to be created that truly
      represent highest level of shared cache for all platforms.
      Signed-off-by: NAtish Patra <atish.patra@oracle.com>
      Reviewed-by: NChris Hyser <chris.hyser@oracle.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d624716b
  9. 23 12月, 2015 1 次提交
  10. 23 4月, 2015 1 次提交
    • C
      sparc64: Setup sysfs to mark LDOM sockets, cores and threads correctly · acc455cf
      chris hyser 提交于
      commit 5f4826a362405748bbf73957027b77993e61e1af
      Author: chris hyser <chris.hyser@oracle.com>
      Date:   Tue Apr 21 10:31:38 2015 -0400
      
          sparc64: Setup sysfs to mark LDOM sockets, cores and threads correctly
      
          The current sparc kernel has no representation for sockets though tools
          like lscpu can pull this from sysfs. This patch walks the machine
          description cache and socket hierarchy and marks sockets as well as cores
          and threads such that a representative sysfs is created by
          drivers/base/topology.c.
      
          Before this patch:
              $ lscpu
              Architecture:          sparc64
              CPU op-mode(s):        32-bit, 64-bit
              Byte Order:            Big Endian
              CPU(s):                1024
              On-line CPU(s) list:   0-1023
              Thread(s) per core:    8
              Core(s) per socket:    1     <--- wrong
              Socket(s):             128   <--- wrong
              NUMA node(s):          4
              NUMA node0 CPU(s):     0-255
              NUMA node1 CPU(s):     256-511
              NUMA node2 CPU(s):     512-767
              NUMA node3 CPU(s):     768-1023
      
              After this patch:
              $ lscpu
              Architecture:          sparc64
              CPU op-mode(s):        32-bit, 64-bit
              Byte Order:            Big Endian
              CPU(s):                1024
              On-line CPU(s) list:   0-1023
              Thread(s) per core:    8
              Core(s) per socket:    32
              Socket(s):             4
              NUMA node(s):          4
              NUMA node0 CPU(s):     0-255
              NUMA node1 CPU(s):     256-511
              NUMA node2 CPU(s):     512-767
              NUMA node3 CPU(s):     768-1023
      
          Most of this patch was done by Chris with updates by David.
      Signed-off-by: NChris Hyser <chris.hyser@oracle.com>
      Signed-off-by: NDavid Ahern <david.ahern@oracle.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      acc455cf
  11. 15 4月, 2015 1 次提交
    • M
      sparc: clarify __GFP_NOFAIL allocation · f91e8d6d
      Michal Hocko 提交于
      Commit 920c3ed7 ("[SPARC64]: Add basic infrastructure for MD
      add/remove notification") has added __GFP_NOFAIL for the allocation
      request but it hasn't mentioned why is this strict requirement really
      needed.  The code was handling an allocation failure and propagated it
      properly up the callchain so it is not clear why it is needed.
      
      Dave has clarified the intention when I tried to remove the flag as not
      being necessary:
      
      : It is a serious failure.
      :
      : If we miss an MDESC update due to this allocation failure, the update
      : is not an event which gets retransmitted so we will lose the updated
      : machine description forever.
      :
      : We really need this allocation to succeed.
      
      So add a comment to clarify the nofail flag and get rid of the failure
      check because __GFP_NOFAIL allocation doesn't fail.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: "Theodore Ts'o" <tytso@mit.edu>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Vipul Pandya <vipul@chelsio.com>
      Cc: Jan Kara <jack@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f91e8d6d
  12. 22 7月, 2014 1 次提交
  13. 11 3月, 2014 1 次提交
  14. 15 7月, 2013 1 次提交
    • P
      sparc: delete __cpuinit/__CPUINIT usage from all users · 2066aadd
      Paul Gortmaker 提交于
      The __cpuinit type of throwaway sections might have made sense
      some time ago when RAM was more constrained, but now the savings
      do not offset the cost and complications.  For example, the fix in
      commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time")
      is a good example of the nasty type of bugs that can be created
      with improper use of the various __init prefixes.
      
      After a discussion on LKML[1] it was decided that cpuinit should go
      the way of devinit and be phased out.  Once all the users are gone,
      we can then finally remove the macros themselves from linux/init.h.
      
      Note that some harmless section mismatch warnings may result, since
      notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
      are flagged as __cpuinit  -- so if we remove the __cpuinit from
      arch specific callers, we will also get section mismatch warnings.
      As an intermediate step, we intend to turn the linux/init.h cpuinit
      content into no-ops as early as possible, since that will get rid
      of these warnings.  In any case, they are temporary and harmless.
      
      This removes all the arch/sparc uses of the __cpuinit macros from
      C files and removes __CPUINIT from assembly files.  Note that even
      though arch/sparc/kernel/trampoline_64.S has instances of ".previous"
      in it, they are all paired off against explicit ".section" directives,
      and not implicitly paired with __CPUINIT (unlike mips and arm were).
      
      [1] https://lkml.org/lkml/2013/5/20/589
      
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: sparclinux@vger.kernel.org
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      2066aadd
  15. 07 9月, 2012 1 次提交
  16. 01 11月, 2011 2 次提交
  17. 05 8月, 2011 1 次提交
    • D
      sparc: Size mondo queues more sanely. · 961f65fc
      David S. Miller 提交于
      There is currently no upper limit on the mondo queue sizes we'll use,
      which guarentees that we'll eventually his page allocation limits, and
      thus allocation failures, due to MAX_ORDER.
      
      Cap the sizes sanely, current limits are:
      
      CPU  MONDO	2 * max_possible_cpus
      DEV  MONDO	256 (basically NR_IRQS)
      RES  MONDO	128
      NRES MONDO	4
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      961f65fc
  18. 17 5月, 2011 1 次提交
  19. 31 3月, 2011 1 次提交
    • D
      sparc64: Fix section mis-match errors. · 3628aa06
      David S. Miller 提交于
      Fix all of the problems spotted by CONFIG_DEBUG_SECTION_MISMATCH under
      arch/sparc during a 64-bit defconfig build.
      
      They fall into two categorites:
      
      1) of_device_id is marked as __initdata, and we can never do this
         since these objects sit in the device core data structures way
         past boot.  So even if a driver will never be reloaded, we have
         to keep the device ID table around.
      
         Mark such cases const instead.
      
      2) The bootmem alloc/free handling code in mdesc.c was not fully
         marked __init as it should be, thus generating a reference
         to free_bootmem_late() (which is __init) from non-__init code.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3628aa06
  20. 15 10月, 2010 1 次提交
    • A
      llseek: automatically add .llseek fop · 6038f373
      Arnd Bergmann 提交于
      All file_operations should get a .llseek operation so we can make
      nonseekable_open the default for future file operations without a
      .llseek pointer.
      
      The three cases that we can automatically detect are no_llseek, seq_lseek
      and default_llseek. For cases where we can we can automatically prove that
      the file offset is always ignored, we use noop_llseek, which maintains
      the current behavior of not returning an error from a seek.
      
      New drivers should normally not use noop_llseek but instead use no_llseek
      and call nonseekable_open at open time.  Existing drivers can be converted
      to do the same when the maintainer knows for certain that no user code
      relies on calling seek on the device file.
      
      The generated code is often incorrectly indented and right now contains
      comments that clarify for each added line why a specific variant was
      chosen. In the version that gets submitted upstream, the comments will
      be gone and I will manually fix the indentation, because there does not
      seem to be a way to do that using coccinelle.
      
      Some amount of new code is currently sitting in linux-next that should get
      the same modifications, which I will do at the end of the merge window.
      
      Many thanks to Julia Lawall for helping me learn to write a semantic
      patch that does all this.
      
      ===== begin semantic patch =====
      // This adds an llseek= method to all file operations,
      // as a preparation for making no_llseek the default.
      //
      // The rules are
      // - use no_llseek explicitly if we do nonseekable_open
      // - use seq_lseek for sequential files
      // - use default_llseek if we know we access f_pos
      // - use noop_llseek if we know we don't access f_pos,
      //   but we still want to allow users to call lseek
      //
      @ open1 exists @
      identifier nested_open;
      @@
      nested_open(...)
      {
      <+...
      nonseekable_open(...)
      ...+>
      }
      
      @ open exists@
      identifier open_f;
      identifier i, f;
      identifier open1.nested_open;
      @@
      int open_f(struct inode *i, struct file *f)
      {
      <+...
      (
      nonseekable_open(...)
      |
      nested_open(...)
      )
      ...+>
      }
      
      @ read disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      <+...
      (
         *off = E
      |
         *off += E
      |
         func(..., off, ...)
      |
         E = *off
      )
      ...+>
      }
      
      @ read_no_fpos disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ write @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      <+...
      (
        *off = E
      |
        *off += E
      |
        func(..., off, ...)
      |
        E = *off
      )
      ...+>
      }
      
      @ write_no_fpos @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ fops0 @
      identifier fops;
      @@
      struct file_operations fops = {
       ...
      };
      
      @ has_llseek depends on fops0 @
      identifier fops0.fops;
      identifier llseek_f;
      @@
      struct file_operations fops = {
      ...
       .llseek = llseek_f,
      ...
      };
      
      @ has_read depends on fops0 @
      identifier fops0.fops;
      identifier read_f;
      @@
      struct file_operations fops = {
      ...
       .read = read_f,
      ...
      };
      
      @ has_write depends on fops0 @
      identifier fops0.fops;
      identifier write_f;
      @@
      struct file_operations fops = {
      ...
       .write = write_f,
      ...
      };
      
      @ has_open depends on fops0 @
      identifier fops0.fops;
      identifier open_f;
      @@
      struct file_operations fops = {
      ...
       .open = open_f,
      ...
      };
      
      // use no_llseek if we call nonseekable_open
      ////////////////////////////////////////////
      @ nonseekable1 depends on !has_llseek && has_open @
      identifier fops0.fops;
      identifier nso ~= "nonseekable_open";
      @@
      struct file_operations fops = {
      ...  .open = nso, ...
      +.llseek = no_llseek, /* nonseekable */
      };
      
      @ nonseekable2 depends on !has_llseek @
      identifier fops0.fops;
      identifier open.open_f;
      @@
      struct file_operations fops = {
      ...  .open = open_f, ...
      +.llseek = no_llseek, /* open uses nonseekable */
      };
      
      // use seq_lseek for sequential files
      /////////////////////////////////////
      @ seq depends on !has_llseek @
      identifier fops0.fops;
      identifier sr ~= "seq_read";
      @@
      struct file_operations fops = {
      ...  .read = sr, ...
      +.llseek = seq_lseek, /* we have seq_read */
      };
      
      // use default_llseek if there is a readdir
      ///////////////////////////////////////////
      @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier readdir_e;
      @@
      // any other fop is used that changes pos
      struct file_operations fops = {
      ... .readdir = readdir_e, ...
      +.llseek = default_llseek, /* readdir is present */
      };
      
      // use default_llseek if at least one of read/write touches f_pos
      /////////////////////////////////////////////////////////////////
      @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read.read_f;
      @@
      // read fops use offset
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = default_llseek, /* read accesses f_pos */
      };
      
      @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ... .write = write_f, ...
      +	.llseek = default_llseek, /* write accesses f_pos */
      };
      
      // Use noop_llseek if neither read nor write accesses f_pos
      ///////////////////////////////////////////////////////////
      
      @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      identifier write_no_fpos.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ...
       .write = write_f,
       .read = read_f,
      ...
      +.llseek = noop_llseek, /* read and write both use no f_pos */
      };
      
      @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write_no_fpos.write_f;
      @@
      struct file_operations fops = {
      ... .write = write_f, ...
      +.llseek = noop_llseek, /* write uses no f_pos */
      };
      
      @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      @@
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = noop_llseek, /* read uses no f_pos */
      };
      
      @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      @@
      struct file_operations fops = {
      ...
      +.llseek = noop_llseek, /* no read or write fn */
      };
      ===== End semantic patch =====
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Julia Lawall <julia@diku.dk>
      Cc: Christoph Hellwig <hch@infradead.org>
      6038f373
  21. 14 7月, 2010 1 次提交
  22. 11 12月, 2009 1 次提交
  23. 16 6月, 2009 4 次提交
  24. 16 3月, 2009 1 次提交
  25. 07 1月, 2009 1 次提交
    • S
      sparc64: Use unsigned long long for u64. · 90181136
      Sam Ravnborg 提交于
      Andrew Morton wrote:
      
          People keep on doing
      
                  printk("%llu", some_u64);
      
          testing it only on x86_64 and this generates a warning storm on
          powerpc, sparc64, etc.  Because they use `long', not `long long'.
      
          Quite a few 64-bit architectures are using `long' for their
          s64/u64 types.  We should convert them all to `long long'.
      
      Update types.h so we use unsigned long long for u64 and
      fix all warnings in sparc64 code.
      Tested with an allnoconfig, defconfig and allmodconfig builds.
      
      This patch introduces additional warnings in several drivers.
      These will be dealt with in separate patches.
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      90181136
  26. 27 12月, 2008 1 次提交
  27. 05 12月, 2008 1 次提交
    • S
      sparc,sparc64: unify kernel/ · a88b5ba8
      Sam Ravnborg 提交于
      o Move all files from sparc64/kernel/ to sparc/kernel
        - rename as appropriate
      o Update sparc/Makefile to the changes
      o Update sparc/kernel/Makefile to include the sparc64 files
      
      NOTE: This commit changes link order on sparc64!
      
      Link order had to change for either of sparc32 and sparc64.
      And assuming sparc64 see more testing than sparc32 change link
      order on sparc64 where issues will be caught faster.
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a88b5ba8
  28. 24 4月, 2008 1 次提交
  29. 25 2月, 2008 1 次提交
    • S
      [SPARC64]: Fix section mismatchs from dr_cpu_data · 7769bd1c
      Sam Ravnborg 提交于
      Fix following warnings:
      WARNING: vmlinux.o(.text+0x4b258): Section mismatch in reference from the function dr_cpu_data() to the function .devinit.text:mdesc_fill_in_cpu_data()
      WARNING: vmlinux.o(.text+0x4b290): Section mismatch in reference from the function dr_cpu_data() to the function .cpuinit.text:cpu_up()
      
      mdesc_fill_in_cpu_data() is only used during early init and for
      cpu hotplug so the __cpuinit annotation is the correct choice.
      We have the call chain:
      dr_cpu_data() => dr_cpu_configure() => mdesc_fill_in_cpu_data()
      
      dr_cpu_data() is used only during early init and for cpu
      hotplug. So annotating them all __cpuinit solves the
      section mismatch and should be correct.
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7769bd1c
  30. 17 9月, 2007 1 次提交
  31. 16 8月, 2007 1 次提交
  32. 08 8月, 2007 1 次提交