- 16 9月, 2019 3 次提交
-
-
由 WANG Chao 提交于
[ Upstream commit 1811d979c71621aafc7b879477202d286f7e863b ] guest xcr0 could leak into host when MCE happens in guest mode. Because do_machine_check() could schedule out at a few places. For example: kvm_load_guest_xcr0 ... kvm_x86_ops->run(vcpu) { vmx_vcpu_run vmx_complete_atomic_exit kvm_machine_check do_machine_check do_memory_failure memory_failure lock_page In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule out, host cpu has guest xcr0 loaded (0xff). In __switch_to { switch_fpu_finish copy_kernel_to_fpregs XRSTORS If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in and tries to reinitialize fpu by restoring init fpu state. Same story as last #GP, except we get DOUBLE FAULT this time. Cc: stable@vger.kernel.org Signed-off-by: NWANG Chao <chao.wang@ucloud.cn> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Ben Gardon 提交于
[ Upstream commit bc8a3d8925a8fa09fa550e0da115d95851ce33c6 ] KVM bases its memory usage limits on the total number of guest pages across all memslots. However, those limits, and the calculations to produce them, use 32 bit unsigned integers. This can result in overflow if a VM has more guest pages that can be represented by a u32. As a result of this overflow, KVM can use a low limit on the number of MMU pages it will allocate. This makes KVM unable to map all of guest memory at once, prompting spurious faults. Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch introduced no new failures. Signed-off-by: NBen Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Ladi Prosek 提交于
[ Upstream commit 72bbf9358c3676bd89dc4bd8fb0b1f2a11c288fc ] The state related to the VP assist page is still managed by the LAPIC code in the pv_eoi field. Signed-off-by: NLadi Prosek <lprosek@redhat.com> Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 9月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 75ee23b30dc712d80d2421a9a547e7ab6e379b44 upstream. Don't advance RIP or inject a single-step #DB if emulation signals a fault. This logic applies to all state updates that are conditional on clean retirement of the emulation instruction, e.g. updating RFLAGS was previously handled by commit 38827dbd ("KVM: x86: Do not update EFLAGS on faulting emulation"). Not advancing RIP is likely a nop, i.e. ctxt->eip isn't updated with ctxt->_eip until emulation "retires" anyways. Skipping #DB injection fixes a bug reported by Andy Lutomirski where a #UD on SYSCALL due to invalid state with EFLAGS.TF=1 would loop indefinitely due to emulation overwriting the #UD with #DB and thus restarting the bad SYSCALL over and over. Cc: Nadav Amit <nadav.amit@gmail.com> Cc: stable@vger.kernel.org Reported-by: NAndy Lutomirski <luto@kernel.org> Fixes: 663f4c61 ("KVM: x86: handle singlestep during emulation") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 16 8月, 2019 1 次提交
-
-
由 Wanpeng Li 提交于
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a146 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 7月, 2019 1 次提交
-
-
由 Paolo Bonzini 提交于
commit 3f16a5c318392cbb5a0c7a3d19dff8c8ef3c38ee upstream. This warning can be triggered easily by userspace, so it should certainly not cause a panic if panic_on_warn is set. Reported-by: syzbot+c03f30b4f4c46bdf8575@syzkaller.appspotmail.com Suggested-by: NAlexander Potapenko <glider@google.com> Acked-by: NAlexander Potapenko <glider@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 09 6月, 2019 1 次提交
-
-
由 Thomas Huth 提交于
commit a86cb413f4bf273a9d341a3ab2c2ca44e12eb317 upstream. KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all architectures. However, on s390x, the amount of usable CPUs is determined during runtime - it is depending on the features of the machine the code is running on. Since we are using the vcpu_id as an index into the SCA structures that are defined by the hardware (see e.g. the sca_add_vcpu() function), it is not only the amount of CPUs that is limited by the hard- ware, but also the range of IDs that we can use. Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too. So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common code into the architecture specific code, and on s390x we have to return the same value here as for KVM_CAP_MAX_VCPUS. This problem has been discovered with the kvm_create_max_vcpus selftest. With this change applied, the selftest now passes on s390x, too. Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NCornelia Huck <cohuck@redhat.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Signed-off-by: NThomas Huth <thuth@redhat.com> Message-Id: <20190523164309.13345-9-thuth@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 5月, 2019 1 次提交
-
-
由 Paolo Bonzini 提交于
commit 66f61c92889ff3ca365161fb29dd36d6354682ba upstream. Commit 11988499e62b ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes", 2019-04-02) introduced a "return false" in a function returning int, and anyway set_efer has a "nonzero on error" conventon so it should be returning 1. Reported-by: NPavel Machek <pavel@denx.de> Fixes: 11988499e62b ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes") Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 22 5月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 11988499e62b310f3bf6f6d0a807a06d3f9ccc96 upstream. KVM allows userspace to violate consistency checks related to the guest's CPUID model to some degree. Generally speaking, userspace has carte blanche when it comes to guest state so long as jamming invalid state won't negatively affect the host. Currently this is seems to be a non-issue as most of the interesting EFER checks are missing, e.g. NX and LME, but those will be added shortly. Proactively exempt userspace from the CPUID checks so as not to break userspace. Note, the efer_reserved_bits check still applies to userspace writes as that mask reflects the host's capabilities, e.g. KVM shouldn't allow a guest to run with NX=1 if it has been disabled in the host. Fixes: d8017474 ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 05 5月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 8764ed55c9705e426d889ff16c26f398bba70b9b upstream. KVM's recent bug fix to update %rip after emulating I/O broke userspace that relied on the previous behavior of incrementing %rip prior to exiting to userspace. When running a Windows XP guest on AMD hardware, Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself. Because KVM's old behavior was to increment %rip before exiting to userspace to handle the I/O, Qemu manually adjusted %rip to account for the OUT instruction. Arguably this is a userspace bug as KVM requires userspace to re-enter the kernel to complete instruction emulation before taking any other actions. That being said, this is a bit of a grey area and breaking userspace that has worked for many years is bad. Pre-increment %rip on OUT to port 0x7e before exiting to userspace to hack around the issue. Fixes: 45def77ebf79e ("KVM: x86: update %rip after emulating IO") Reported-by: NSimon Becherer <simon@becherer.de> Reported-and-tested-by: NIakov Karpov <srid@rkmail.ru> Reported-by: NGabriele Balducci <balducci@units.it> Reported-by: NAntti Antinoja <reader@fennosys.fi> Cc: stable@vger.kernel.org Cc: Takashi Iwai <tiwai@suse.com> Cc: Jiri Slaby <jslaby@suse.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 03 4月, 2019 2 次提交
-
-
由 Sean Christopherson 提交于
commit 0cf9135b773bf32fba9dd8e6699c1b331ee4b749 upstream. The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Sean Christopherson 提交于
commit 45def77ebf79e2e8942b89ed79294d97ce914fa0 upstream. Most (all?) x86 platforms provide a port IO based reset mechanism, e.g. OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM that it is doing a reset, e.g. Qemu jams vCPU state and resumes running. To avoid corruping %rip after such a reset, commit 0967b7bf ("KVM: Skip pio instruction when it is emulated, not executed") changed the behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the instruction prior to exiting to userspace. Full emulation doesn't need such tricks becase re-emulating the instruction will naturally handle %rip being changed to point at the reset vector. Updating %rip prior to executing to userspace has several drawbacks: - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation fails it will likely yell about the wrong address. - Single step exits to userspace for are effectively dropped as KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO. - Behavior of PIO emulation is different depending on whether it goes down the fast path or the slow path. Rather than skip the PIO instruction before exiting to userspace, snapshot the linear %rip and cancel PIO completion if the current value does not match the snapshot. For a 64-bit vCPU, i.e. the most common scenario, the snapshot and comparison has negligible overhead as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra VMREAD in this case. All other alternatives to snapshotting the linear %rip that don't rely on an explicit reset announcenment suffer from one corner case or another. For example, canceling PIO completion on any write to %rip fails if userspace does a save/restore of %rip, and attempting to avoid that issue by canceling PIO only if %rip changed then fails if PIO collides with the reset %rip. Attempting to zero in on the exact reset vector won't work for APs, which means adding more hooks such as the vCPU's MP_STATE, and so on and so forth. Checking for a linear %rip match technically suffers from corner cases, e.g. userspace could theoretically rewrite the underlying code page and expect a different instruction to execute, or the guest hardcodes a PIO reset at 0xfffffff0, but those are far, far outside of what can be considered normal operation. Fixes: 432baf60 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O") Cc: <stable@vger.kernel.org> Reported-by: NJim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 3月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 2月, 2019 1 次提交
-
-
由 Paolo Bonzini 提交于
commit 353c0956a618a07ba4bbe7ad00ff29fe70e8412a upstream. Bugzilla: 1671930 Emulation of certain instructions (VMXON, VMCLEAR, VMPTRLD, VMWRITE with memory operand, INVEPT, INVVPID) can incorrectly inject a page fault when passed an operand that points to an MMIO address. The page fault will use uninitialized kernel stack memory as the CR2 and error code. The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR exit to userspace; however, it is not an easy fix, so for now just ensure that the error code and CR2 are zero. Embargoed until Feb 7th 2019. Reported-by: NFelix Wilhelm <fwilhelm@google.com> Cc: stable@kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 1月, 2019 2 次提交
-
-
由 Sean Christopherson 提交于
commit 1ed199a41c70ad7bfaee8b14f78e791fcf43b278 upstream. The recognition of the KVM_HC_SEND_IPI hypercall was unintentionally wrapped in "#ifdef CONFIG_X86_64", causing 32-bit KVM hosts to reject any and all PV IPI requests despite advertising the feature. This results in all KVM paravirtualized guests hanging during SMP boot due to IPIs never being delivered. Fixes: 4180bf1b ("KVM: X86: Implement "send IPI" hypercall") Cc: stable@vger.kernel.org Cc: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Alexander Popov 提交于
commit 5cc244a20b86090c087073c124284381cdf47234 upstream. The single-step debugging of KVM guests on x86 is broken: if we run gdb 'stepi' command at the breakpoint when the guest interrupts are enabled, RIP always jumps to native_apic_mem_write(). Then other nasty effects follow. Long investigation showed that on Jun 7, 2017 the commit c8401dda ("KVM: x86: fix singlestepping over syscall") introduced the kvm_run.debug corruption: kvm_vcpu_do_singlestep() can be called without X86_EFLAGS_TF set. Let's fix it. Please consider that for -stable. Signed-off-by: NAlexander Popov <alex.popov@linux.com> Cc: stable@vger.kernel.org Fixes: c8401dda ("KVM: x86: fix singlestepping over syscall") Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 12月, 2018 2 次提交
-
-
由 Eduardo Habkost 提交于
commit 0e1b869fff60c81b510c2d00602d778f8f59dd9a upstream. Some guests OSes (including Windows 10) write to MSR 0xc001102c on some cases (possibly while trying to apply a CPU errata). Make KVM ignore reads and writes to that MSR, so the guest won't crash. The MSR is documented as "Execution Unit Configuration (EX_CFG)", at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors". Cc: stable@vger.kernel.org Signed-off-by: NEduardo Habkost <ehabkost@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Wanpeng Li 提交于
commit dcbd3e49c2f0b2c2d8a321507ff8f3de4af76d7c upstream. Reported by syzkaller: CPU: 1 PID: 5962 Comm: syz-executor118 Not tainted 4.20.0-rc6+ #374 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:kvm_apic_hw_enabled arch/x86/kvm/lapic.h:169 [inline] RIP: 0010:vcpu_scan_ioapic arch/x86/kvm/x86.c:7449 [inline] RIP: 0010:vcpu_enter_guest arch/x86/kvm/x86.c:7602 [inline] RIP: 0010:vcpu_run arch/x86/kvm/x86.c:7874 [inline] RIP: 0010:kvm_arch_vcpu_ioctl_run+0x5296/0x7320 arch/x86/kvm/x86.c:8074 Call Trace: kvm_vcpu_ioctl+0x5c8/0x1150 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2596 vfs_ioctl fs/ioctl.c:46 [inline] file_ioctl fs/ioctl.c:509 [inline] do_vfs_ioctl+0x1de/0x1790 fs/ioctl.c:696 ksys_ioctl+0xa9/0xd0 fs/ioctl.c:713 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT14 msr and triggers scan ioapic logic to load synic vectors into EOI exit bitmap. However, irqchip is not initialized by this simple testcase, ioapic/apic objects should not be accessed. This patch fixes it by also considering whether or not apic is present. Reported-by: syzbot+39810e6c400efadfef71@syzkaller.appspotmail.com Cc: stable@vger.kernel.org Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 06 12月, 2018 3 次提交
-
-
由 Wanpeng Li 提交于
commit e97f852f upstream. Reported by syzkaller: BUG: unable to handle kernel NULL pointer dereference at 00000000000001c8 PGD 80000003ec4da067 P4D 80000003ec4da067 PUD 3f7bfa067 PMD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 7 PID: 5059 Comm: debug Tainted: G OE 4.19.0-rc5 #16 RIP: 0010:__lock_acquire+0x1a6/0x1990 Call Trace: lock_acquire+0xdb/0x210 _raw_spin_lock+0x38/0x70 kvm_ioapic_scan_entry+0x3e/0x110 [kvm] vcpu_enter_guest+0x167e/0x1910 [kvm] kvm_arch_vcpu_ioctl_run+0x35c/0x610 [kvm] kvm_vcpu_ioctl+0x3e9/0x6d0 [kvm] do_vfs_ioctl+0xa5/0x690 ksys_ioctl+0x6d/0x80 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x83/0x6e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT6 msr and triggers scan ioapic logic to load synic vectors into EOI exit bitmap. However, irqchip is not initialized by this simple testcase, ioapic/apic objects should not be accessed. This can be triggered by the following program: #define _GNU_SOURCE #include <endian.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; int main(void) { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); long res = 0; memcpy((void*)0x20000040, "/dev/kvm", 9); res = syscall(__NR_openat, 0xffffffffffffff9c, 0x20000040, 0, 0); if (res != -1) r[0] = res; res = syscall(__NR_ioctl, r[0], 0xae01, 0); if (res != -1) r[1] = res; res = syscall(__NR_ioctl, r[1], 0xae41, 0); if (res != -1) r[2] = res; memcpy( (void*)0x20000080, "\x01\x00\x00\x00\x00\x5b\x61\xbb\x96\x00\x00\x40\x00\x00\x00\x00\x01\x00" "\x08\x00\x00\x00\x00\x00\x0b\x77\xd1\x78\x4d\xd8\x3a\xed\xb1\x5c\x2e\x43" "\xaa\x43\x39\xd6\xff\xf5\xf0\xa8\x98\xf2\x3e\x37\x29\x89\xde\x88\xc6\x33" "\xfc\x2a\xdb\xb7\xe1\x4c\xac\x28\x61\x7b\x9c\xa9\xbc\x0d\xa0\x63\xfe\xfe" "\xe8\x75\xde\xdd\x19\x38\xdc\x34\xf5\xec\x05\xfd\xeb\x5d\xed\x2e\xaf\x22" "\xfa\xab\xb7\xe4\x42\x67\xd0\xaf\x06\x1c\x6a\x35\x67\x10\x55\xcb", 106); syscall(__NR_ioctl, r[2], 0x4008ae89, 0x20000080); syscall(__NR_ioctl, r[2], 0xae80, 0); return 0; } This patch fixes it by bailing out scan ioapic if ioapic is not initialized in kernel. Reported-by: NWei Wu <ww9210@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wei Wu <ww9210@gmail.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Liran Alon 提交于
commit bcbfbd8e upstream. kvm_pv_clock_pairing() allocates local var "struct kvm_clock_pairing clock_pairing" on stack and initializes all it's fields besides padding (clock_pairing.pad[]). Because clock_pairing var is written completely (including padding) to guest memory, failure to init struct padding results in kernel info-leak. Fix the issue by making sure to also init the padding with zeroes. Fixes: 55dd00a7 ("KVM: x86: add KVM_HC_CLOCK_PAIRING hypercall") Reported-by: syzbot+a8ef68d71211ba264f56@syzkaller.appspotmail.com Reviewed-by: NMark Kanda <mark.kanda@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Leonid Shatz 提交于
commit 326e742533bf0a23f0127d8ea62fb558ba665f08 upstream. Since commit e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NLeonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 01 10月, 2018 1 次提交
-
-
由 Liran Alon 提交于
Commit a87036ad ("KVM: x86: disable MPX if host did not enable MPX XSAVE features") introduced kvm_mpx_supported() to return true iff MPX is enabled in the host. However, that commit seems to have missed replacing some calls to kvm_x86_ops->mpx_supported() to kvm_mpx_supported(). Complete original commit by replacing remaining calls to kvm_mpx_supported(). Fixes: a87036ad ("KVM: x86: disable MPX if host did not enable MPX XSAVE features") Suggested-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 21 9月, 2018 1 次提交
-
-
由 Liran Alon 提交于
The handlers of IOCTLs in kvm_arch_vcpu_ioctl() are expected to set their return value in "r" local var and break out of switch block when they encounter some error. This is because vcpu_load() is called before the switch block which have a proper cleanup of vcpu_put() afterwards. However, KVM_{GET,SET}_NESTED_STATE IOCTLs handlers just return immediately on error without performing above mentioned cleanup. Thus, change these handlers to behave as expected. Fixes: 8fcc4b59 ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE") Reviewed-by: NMark Kanda <mark.kanda@oracle.com> Reviewed-by: NPatrick Colp <patrick.colp@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 20 9月, 2018 6 次提交
-
-
由 Drew Schmitt 提交于
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access to reads of MSR_PLATFORM_INFO. Disabling access to reads of this MSR gives userspace the control to "expose" this platform-dependent information to guests in a clear way. As it exists today, guests that read this MSR would get unpopulated information if userspace hadn't already set it (and prior to this patch series, only the CPUID faulting information could have been populated). This existing interface could be confusing if guests don't handle the potential for incorrect/incomplete information gracefully (e.g. zero reported for base frequency). Signed-off-by: NDrew Schmitt <dasch@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Drew Schmitt 提交于
Allow userspace to set turbo bits in MSR_PLATFORM_INFO. Previously, only the CPUID faulting bit was settable. But now any bit in MSR_PLATFORM_INFO would be settable. This can be used, for example, to convey frequency information about the platform on which the guest is running. Signed-off-by: NDrew Schmitt <dasch@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Liran Alon 提交于
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state, it is possible for a vCPU to be blocked while it is in guest-mode. According to Intel SDM 26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery: "These events wake the logical processor if it just entered the HLT state because of a VM entry". Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU should be waken from the HLT state and injected with the interrupt. In addition, if while the vCPU is blocked (while it is in guest-mode), it receives a nested posted-interrupt, then the vCPU should also be waken and injected with the posted interrupt. To handle these cases, this patch enhances kvm_vcpu_has_events() to also check if there is a pending interrupt in L2 virtual APICv provided by L1. That is, it evaluates if there is a pending virtual interrupt for L2 by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1 Evaluation of Pending Interrupts. Note that this also handles the case of nested posted-interrupt by the fact RVI is updated in vmx_complete_nested_posted_interrupt() which is called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() -> kvm_vcpu_running() -> vmx_check_nested_events() -> vmx_complete_nested_posted_interrupt(). Reviewed-by: NNikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
The functions kvm_load_guest_fpu() kvm_put_guest_fpu() are only used locally, make them static. This requires also that both functions are moved because they are used before their implementation. Those functions were exported (via EXPORT_SYMBOL) before commit e5bb4025 ("KVM: Drop kvm_{load,put}_guest_fpu() exports"). Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
A VMX preemption timer value of '0' is guaranteed to cause a VMExit prior to the CPU executing any instructions in the guest. Use the preemption timer (if it's supported) to trigger immediate VMExit in place of the current method of sending a self-IPI. This ensures that pending VMExit injection to L1 occurs prior to executing any instructions in the guest (regardless of nesting level). When deferring VMExit injection, KVM generates an immediate VMExit from the (possibly nested) guest by sending itself an IPI. Because hardware interrupts are blocked prior to VMEnter and are unblocked (in hardware) after VMEnter, this results in taking a VMExit(INTR) before any guest instruction is executed. But, as this approach relies on the IPI being received before VMEnter executes, it only works as intended when KVM is running as L0. Because there are no architectural guarantees regarding when IPIs are delivered, when running nested the INTR may "arrive" long after L2 is running e.g. L0 KVM doesn't force an immediate switch to L1 to deliver an INTR. For the most part, this unintended delay is not an issue since the events being injected to L1 also do not have architectural guarantees regarding their timing. The notable exception is the VMX preemption timer[1], which is architecturally guaranteed to cause a VMExit prior to executing any instructions in the guest if the timer value is '0' at VMEnter. Specifically, the delay in injecting the VMExit causes the preemption timer KVM unit test to fail when run in a nested guest. Note: this approach is viable even on CPUs with a broken preemption timer, as broken in this context only means the timer counts at the wrong rate. There are no known errata affecting timer value of '0'. [1] I/O SMIs also have guarantees on when they arrive, but I have no idea if/how those are emulated in KVM. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> [Use a hook for SVM instead of leaving the default in x86.c - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
kvm should not attempt to read guest PDPTEs when CR0.PG = 0 and CR4.PAE = 1. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 30 8月, 2018 5 次提交
-
-
由 Sean Christopherson 提交于
Allowing x86_emulate_instruction() to be called directly has led to subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE in the emulation type. While most of the blame lies on re-execute being opt-out, exporting x86_emulate_instruction() also exposes its cr2 parameter, which may have contributed to commit d391f120 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested") using x86_emulate_instruction() instead of emulate_instruction() because "hey, I have a cr2!", which in turn introduced its EMULTYPE_NO_REEXECUTE bug. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Lack of the kvm_ prefix gives the impression that it's a VMX or SVM specific function, and there's no conflict that prevents adding the kvm_ prefix. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Commit a6f177ef ("KVM: Reenter guest after emulation failure if due to access to non-mmio address") added reexecute_instruction() to handle the scenario where two (or more) vCPUS race to write a shadowed page, i.e. reexecute_instruction() is intended to return true if and only if the instruction being emulated was accessing a shadowed page. As L0 is only explicitly shadowing L1 tables, an emulation failure of a nested VM instruction cannot be due to a race to write a shadowed page and so should never be re-executed. This fixes an issue where an "MMIO" emulation failure[1] in L2 is all but guaranteed to result in an infinite loop when TDP is enabled. Because "cr2" is actually an L2 GPA when TDP is enabled, calling kvm_mmu_gva_to_gpa_write() to translate cr2 in the non-direct mapped case (L2 is never direct mapped) will almost always yield UNMAPPED_GVA and cause reexecute_instruction() to immediately return true. The !mmio_info_in_cache() check in kvm_mmu_page_fault() doesn't catch this case because mmio_info_in_cache() returns false for a nested MMU (the MMIO caching currently handles L1 only, e.g. to cache nested guests' GPAs we'd have to manually flush the cache when switching between VMs and when L1 updated its page tables controlling the nested guest). Way back when, commit 68be0803 ("KVM: x86: never re-execute instruction with enabled tdp") changed reexecute_instruction() to always return false when using TDP under the assumption that KVM would only get into the emulator for MMIO. Commit 95b3cf69 ("KVM: x86: let reexecute_instruction work for tdp") effectively reverted that behavior in order to handle the scenario where emulation failed due to an access from L1 to the shadow page tables for L2, but it didn't account for the case where emulation failed in L2 with TDP enabled. All of the above logic also applies to retry_instruction(), added by commit 1cb3f3ae ("KVM: x86: retry non-page-table writing instructions"). An indefinite loop in retry_instruction() should be impossible as it protects against retrying the same instruction over and over, but it's still correct to not retry an L2 instruction in the first place. Fix the immediate issue by adding a check for a nested guest when determining whether or not to allow retry in kvm_mmu_page_fault(). In addition to fixing the immediate bug, add WARN_ON_ONCE in the retry functions since they are not designed to handle nested cases, i.e. they need to be modified even if there is some scenario in the future where we want to allow retrying a nested guest. [1] This issue was encountered after commit 3a2936de ("kvm: mmu: Don't expose private memslots to L2") changed the page fault path to return KVM_PFN_NOSLOT when translating an L2 access to a prive memslot. Returning KVM_PFN_NOSLOT is semantically correct when we want to hide a memslot from L2, i.e. there effectively is no defined memory region for L2, but it has the unfortunate side effect of making KVM think the GFN is a MMIO page, thus triggering emulation. The failure occurred with in-development code that deliberately exposed a private memslot to L2, which L2 accessed with an instruction that is not emulated by KVM. Fixes: 95b3cf69 ("KVM: x86: let reexecute_instruction work for tdp") Fixes: 1cb3f3ae ("KVM: x86: retry non-page-table writing instructions") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: Jim Mattson <jmattson@google.com> Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@tencent.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
retry_instruction() and reexecute_instruction() are a package deal, i.e. there is no scenario where one is allowed and the other is not. Merge their controlling emulation type flags to enforce this in code. Name the combined flag EMULTYPE_ALLOW_RETRY to make it abundantly clear that we are allowing re{try,execute} to occur, as opposed to explicitly requesting retry of a previously failed instruction. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Re-execution of an instruction after emulation decode failure is intended to be used only when emulating shadow page accesses. Invert the flag to make allowing re-execution opt-in since that behavior is by far in the minority. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 23 8月, 2018 1 次提交
-
-
由 Michal Hocko 提交于
There are several blockable mmu notifiers which might sleep in mmu_notifier_invalidate_range_start and that is a problem for the oom_reaper because it needs to guarantee a forward progress so it cannot depend on any sleepable locks. Currently we simply back off and mark an oom victim with blockable mmu notifiers as done after a short sleep. That can result in selecting a new oom victim prematurely because the previous one still hasn't torn its memory down yet. We can do much better though. Even if mmu notifiers use sleepable locks there is no reason to automatically assume those locks are held. Moreover majority of notifiers only care about a portion of the address space and there is absolutely zero reason to fail when we are unmapping an unrelated range. Many notifiers do really block and wait for HW which is harder to handle and we have to bail out though. This patch handles the low hanging fruit. __mmu_notifier_invalidate_range_start gets a blockable flag and callbacks are not allowed to sleep if the flag is set to false. This is achieved by using trylock instead of the sleepable lock for most callbacks and continue as long as we do not block down the call chain. I think we can improve that even further because there is a common pattern to do a range lookup first and then do something about that. The first part can be done without a sleeping lock in most cases AFAICS. The oom_reaper end then simply retries if there is at least one notifier which couldn't make any progress in !blockable mode. A retry loop is already implemented to wait for the mmap_sem and this is basically the same thing. The simplest way for driver developers to test this code path is to wrap userspace code which uses these notifiers into a memcg and set the hard limit to hit the oom. This can be done e.g. after the test faults in all the mmu notifier managed memory and set the hard limit to something really small. Then we are looking for a proper process tear down. [akpm@linux-foundation.org: coding style fixes] [akpm@linux-foundation.org: minor code simplification] Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp Reported-by: NDavid Rientjes <rientjes@google.com> Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Mike Marciniszyn <mike.marciniszyn@intel.com> Cc: Dennis Dalessandro <dennis.dalessandro@intel.com> Cc: Sudeep Dutt <sudeep.dutt@intel.com> Cc: Ashutosh Dixit <ashutosh.dixit@intel.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Felix Kuehling <felix.kuehling@amd.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 8月, 2018 1 次提交
-
-
由 Arnd Bergmann 提交于
Removing one of the two accesses of the maxphyaddr variable led to a harmless warning: arch/x86/kvm/x86.c: In function 'kvm_set_mmio_spte_mask': arch/x86/kvm/x86.c:6563:6: error: unused variable 'maxphyaddr' [-Werror=unused-variable] Removing the #ifdef seems to be the nicest workaround, as it makes the code look cleaner than adding another #ifdef. Fixes: 28a1f3ac ("kvm: x86: Set highest physical address bits in non-present/reserved SPTEs") Signed-off-by: NArnd Bergmann <arnd@arndb.de> Cc: stable@vger.kernel.org # L1TF Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 15 8月, 2018 1 次提交
-
-
由 Junaid Shahid 提交于
Always set the 5 upper-most supported physical address bits to 1 for SPTEs that are marked as non-present or reserved, to make them unusable for L1TF attacks from the guest. Currently, this just applies to MMIO SPTEs. (We do not need to mark PTEs that are completely 0 as physical page 0 is already reserved.) This allows mitigation of L1TF without disabling hyper-threading by using shadow paging mode instead of EPT. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 06 8月, 2018 3 次提交
-
-
由 Wanpeng Li 提交于
Using hypercall to send IPIs by one vmexit instead of one by one for xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster mode. Intel guest can enter x2apic cluster mode when interrupt remmaping is enabled in qemu, however, latest AMD EPYC still just supports xapic mode which can get great improvement by Exit-less IPIs. This patchset lets a guest send multicast IPIs, with at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode. Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141): x2apic cluster mode, vanilla Dry-run: 0, 2392199 ns Self-IPI: 6907514, 15027589 ns Normal IPI: 223910476, 251301666 ns Broadcast IPI: 0, 9282161150 ns Broadcast lock: 0, 8812934104 ns x2apic cluster mode, pv-ipi Dry-run: 0, 2449341 ns Self-IPI: 6720360, 15028732 ns Normal IPI: 228643307, 255708477 ns Broadcast IPI: 0, 7572293590 ns => 22% performance boost Broadcast lock: 0, 8316124651 ns x2apic physical mode, vanilla Dry-run: 0, 3135933 ns Self-IPI: 8572670, 17901757 ns Normal IPI: 226444334, 255421709 ns Broadcast IPI: 0, 19845070887 ns Broadcast lock: 0, 19827383656 ns x2apic physical mode, pv-ipi Dry-run: 0, 2446381 ns Self-IPI: 6788217, 15021056 ns Normal IPI: 219454441, 249583458 ns Broadcast IPI: 0, 7806540019 ns => 154% performance boost Broadcast lock: 0, 9143618799 ns Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tianyu Lan 提交于
X86_CR4_OSXSAVE check belongs to sregs check and so move into kvm_valid_sregs(). Signed-off-by: NLan Tianyu <Tianyu.Lan@microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-