1. 15 1月, 2018 2 次提交
  2. 13 1月, 2018 6 次提交
    • J
      arm64: kernel: Add arch-specific SDEI entry code and CPU masking · f5df2696
      James Morse 提交于
      The Software Delegated Exception Interface (SDEI) is an ARM standard
      for registering callbacks from the platform firmware into the OS.
      This is typically used to implement RAS notifications.
      
      Such notifications enter the kernel at the registered entry-point
      with the register values of the interrupted CPU context. Because this
      is not a CPU exception, it cannot reuse the existing entry code.
      (crucially we don't implicitly know which exception level we interrupted),
      
      Add the entry point to entry.S to set us up for calling into C code. If
      the event interrupted code that had interrupts masked, we always return
      to that location. Otherwise we pretend this was an IRQ, and use SDEI's
      complete_and_resume call to return to vbar_el1 + offset.
      
      This allows the kernel to deliver signals to user space processes. For
      KVM this triggers the world switch, a quick spin round vcpu_run, then
      back into the guest, unless there are pending signals.
      
      Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
      the panic() code-path, which doesn't invoke cpuhotplug notifiers.
      
      Because we can interrupt entry-from/exit-to another EL, we can't trust the
      value in sp_el0 or x29, even if we interrupted the kernel, in this case
      the code in entry.S will save/restore sp_el0 and use the value in
      __entry_task.
      
      When we have VMAP stacks we can interrupt the stack-overflow test, which
      stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
      these are allocated when we probe the interface. Future patches will add
      refcounting hooks to allow the arch code to allocate them lazily.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      f5df2696
    • J
      arm64: uaccess: Add PAN helper · e1281f56
      James Morse 提交于
      Add __uaccess_{en,dis}able_hw_pan() helpers to set/clear the PSTATE.PAN
      bit.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      e1281f56
    • J
      arm64: Add vmap_stack header file · ed8b20d4
      James Morse 提交于
      Today the arm64 arch code allocates an extra IRQ stack per-cpu. If we
      also have SDEI and VMAP stacks we need two extra per-cpu VMAP stacks.
      
      Move the VMAP stack allocation out to a helper in a new header file.
      This avoids missing THREADINFO_GFP, or getting the all-important alignment
      wrong.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Reviewed-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      ed8b20d4
    • J
      firmware: arm_sdei: Add driver for Software Delegated Exceptions · ad6eb31e
      James Morse 提交于
      The Software Delegated Exception Interface (SDEI) is an ARM standard
      for registering callbacks from the platform firmware into the OS.
      This is typically used to implement firmware notifications (such as
      firmware-first RAS) or promote an IRQ that has been promoted to a
      firmware-assisted NMI.
      
      Add the code for detecting the SDEI version and the framework for
      registering and unregistering events. Subsequent patches will add the
      arch-specific backend code and the necessary power management hooks.
      
      Only shared events are supported, power management, private events and
      discovery for ACPI systems will be added by later patches.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      ad6eb31e
    • J
      arm64: alternatives: use tpidr_el2 on VHE hosts · 6d99b689
      James Morse 提交于
      Now that KVM uses tpidr_el2 in the same way as Linux's cpu_offset in
      tpidr_el1, merge the two. This saves KVM from save/restoring tpidr_el1
      on VHE hosts, and allows future code to blindly access per-cpu variables
      without triggering world-switch.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Reviewed-by: NChristoffer Dall <cdall@linaro.org>
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      6d99b689
    • J
      KVM: arm64: Change hyp_panic()s dependency on tpidr_el2 · c97e166e
      James Morse 提交于
      Make tpidr_el2 a cpu-offset for per-cpu variables in the same way the
      host uses tpidr_el1. This lets tpidr_el{1,2} have the same value, and
      on VHE they can be the same register.
      
      KVM calls hyp_panic() when anything unexpected happens. This may occur
      while a guest owns the EL1 registers. KVM stashes the vcpu pointer in
      tpidr_el2, which it uses to find the host context in order to restore
      the host EL1 registers before parachuting into the host's panic().
      
      The host context is a struct kvm_cpu_context allocated in the per-cpu
      area, and mapped to hyp. Given the per-cpu offset for this CPU, this is
      easy to find. Change hyp_panic() to take a pointer to the
      struct kvm_cpu_context. Wrap these calls with an asm function that
      retrieves the struct kvm_cpu_context from the host's per-cpu area.
      
      Copy the per-cpu offset from the hosts tpidr_el1 into tpidr_el2 during
      kvm init. (Later patches will make this unnecessary for VHE hosts)
      
      We print out the vcpu pointer as part of the panic message. Add a back
      reference to the 'running vcpu' in the host cpu context to preserve this.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Reviewed-by: NChristoffer Dall <cdall@linaro.org>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      c97e166e
  3. 09 1月, 2018 7 次提交
  4. 05 1月, 2018 1 次提交
  5. 03 1月, 2018 1 次提交
    • S
      perf: ARM DynamIQ Shared Unit PMU support · 7520fa99
      Suzuki K Poulose 提交于
      Add support for the Cluster PMU part of the ARM DynamIQ Shared Unit (DSU).
      The DSU integrates one or more cores with an L3 memory system, control
      logic, and external interfaces to form a multicore cluster. The PMU
      allows counting the various events related to L3, SCU etc, along with
      providing a cycle counter.
      
      The PMU can be accessed via system registers, which are common
      to the cores in the same cluster. The PMU registers follow the
      semantics of the ARMv8 PMU, mostly, with the exception that
      the counters record the cluster wide events.
      
      This driver is mostly based on the ARMv8 and CCI PMU drivers.
      The driver only supports ARM64 at the moment. It can be extended
      to support ARM32 by providing register accessors like we do in
      arch/arm64/include/arm_dsu_pmu.h.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Reviewed-by: NJonathan Cameron <Jonathan.Cameron@huawei.com>
      Reviewed-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      7520fa99
  6. 23 12月, 2017 7 次提交
  7. 11 12月, 2017 12 次提交
  8. 07 12月, 2017 2 次提交
    • W
      arm64: SW PAN: Update saved ttbr0 value on enter_lazy_tlb · d96cc49b
      Will Deacon 提交于
      enter_lazy_tlb is called when a kernel thread rides on the back of
      another mm, due to a context switch or an explicit call to unuse_mm
      where a call to switch_mm is elided.
      
      In these cases, it's important to keep the saved ttbr value up to date
      with the active mm, otherwise we can end up with a stale value which
      points to a potentially freed page table.
      
      This patch implements enter_lazy_tlb for arm64, so that the saved ttbr0
      is kept up-to-date with the active mm for kernel threads.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Vinayak Menon <vinmenon@codeaurora.org>
      Cc: <stable@vger.kernel.org>
      Fixes: 39bc88e5 ("arm64: Disable TTBR0_EL1 during normal kernel execution")
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Reviewed-by: NMark Rutland <mark.rutland@arm.com>
      Reported-by: NVinayak Menon <vinmenon@codeaurora.org>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      d96cc49b
    • W
      arm64: SW PAN: Point saved ttbr0 at the zero page when switching to init_mm · 0adbdfde
      Will Deacon 提交于
      update_saved_ttbr0 mandates that mm->pgd is not swapper, since swapper
      contains kernel mappings and should never be installed into ttbr0. However,
      this means that callers must avoid passing the init_mm to update_saved_ttbr0
      which in turn can cause the saved ttbr0 value to be out-of-date in the context
      of the idle thread. For example, EFI runtime services may leave the saved ttbr0
      pointing at the EFI page table, and kernel threads may end up with stale
      references to freed page tables.
      
      This patch changes update_saved_ttbr0 so that the init_mm points the saved
      ttbr0 value to the empty zero page, which always exists and never contains
      valid translations. EFI and switch can then call into update_saved_ttbr0
      unconditionally.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Vinayak Menon <vinmenon@codeaurora.org>
      Cc: <stable@vger.kernel.org>
      Fixes: 39bc88e5 ("arm64: Disable TTBR0_EL1 during normal kernel execution")
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Reviewed-by: NMark Rutland <mark.rutland@arm.com>
      Reported-by: NVinayak Menon <vinmenon@codeaurora.org>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      0adbdfde
  9. 05 12月, 2017 1 次提交
  10. 01 12月, 2017 1 次提交
    • A
      arm64: ftrace: emit ftrace-mod.o contents through code · be0f272b
      Ard Biesheuvel 提交于
      When building the arm64 kernel with both CONFIG_ARM64_MODULE_PLTS and
      CONFIG_DYNAMIC_FTRACE enabled, the ftrace-mod.o object file is built
      with the kernel and contains a trampoline that is linked into each
      module, so that modules can be loaded far away from the kernel and
      still reach the ftrace entry point in the core kernel with an ordinary
      relative branch, as is emitted by the compiler instrumentation code
      dynamic ftrace relies on.
      
      In order to be able to build out of tree modules, this object file
      needs to be included into the linux-headers or linux-devel packages,
      which is undesirable, as it makes arm64 a special case (although a
      precedent does exist for 32-bit PPC).
      
      Given that the trampoline essentially consists of a PLT entry, let's
      not bother with a source or object file for it, and simply patch it
      in whenever the trampoline is being populated, using the existing
      PLT support routines.
      
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      be0f272b