1. 30 10月, 2014 11 次提交
  2. 27 10月, 2014 5 次提交
  3. 24 10月, 2014 19 次提交
  4. 19 10月, 2014 3 次提交
    • D
      sparc64: Do not define thread fpregs save area as zero-length array. · e2653143
      David S. Miller 提交于
      This breaks the stack end corruption detection facility.
      
      What that facility does it write a magic value to "end_of_stack()"
      and checking to see if it gets overwritten.
      
      "end_of_stack()" is "task_thread_info(p) + 1", which for sparc64 is
      the beginning of the FPU register save area.
      
      So once the user uses the FPU, the magic value is overwritten and the
      debug checks trigger.
      
      Fix this by making the size explicit.
      
      Due to the size we use for the fpsaved[], gsr[], and xfsr[] arrays we
      are limited to 7 levels of FPU state saves.  So each FPU register set
      is 256 bytes, allocate 256 * 7 for the fpregs area.
      Reported-by: NMeelis Roos <mroos@linux.ee>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e2653143
    • D
      sparc64: Fix corrupted thread fault code. · 84bd6d8b
      David S. Miller 提交于
      Every path that ends up at do_sparc64_fault() must install a valid
      FAULT_CODE_* bitmask in the per-thread fault code byte.
      
      Two paths leading to the label winfix_trampoline (which expects the
      FAULT_CODE_* mask in register %g4) were not doing so:
      
      1) For pre-hypervisor TLB protection violation traps, if we took
         the 'winfix_trampoline' path we wouldn't have %g4 initialized
         with the FAULT_CODE_* value yet.  Resulting in using the
         TLB_TAG_ACCESS register address value instead.
      
      2) In the TSB miss path, when we notice that we are going to use a
         hugepage mapping, but we haven't allocated the hugepage TSB yet, we
         still have to take the window fixup case into consideration and
         in that particular path we leave %g4 not setup properly.
      
      Errors on this sort were largely invisible previously, but after
      commit 4ccb9272 ("sparc64: sun4v TLB
      error power off events") we now have a fault_code mask bit
      (FAULT_CODE_BAD_RA) that triggers due to this bug.
      
      FAULT_CODE_BAD_RA triggers because this bit is set in TLB_TAG_ACCESS
      (see #1 above) and thus we get seemingly random bus errors triggered
      for user processes.
      
      Fixes: 4ccb9272 ("sparc64: sun4v TLB error power off events")
      Reported-by: NMeelis Roos <mroos@linux.ee>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      84bd6d8b
    • A
      x86,kvm,vmx: Preserve CR4 across VM entry · d974baa3
      Andy Lutomirski 提交于
      CR4 isn't constant; at least the TSD and PCE bits can vary.
      
      TBH, treating CR0 and CR3 as constant scares me a bit, too, but it looks
      like it's correct.
      
      This adds a branch and a read from cr4 to each vm entry.  Because it is
      extremely likely that consecutive entries into the same vcpu will have
      the same host cr4 value, this fixes up the vmcs instead of restoring cr4
      after the fact.  A subsequent patch will add a kernel-wide cr4 shadow,
      reducing the overhead in the common case to just two memory reads and a
      branch.
      Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
      Acked-by: NPaolo Bonzini <pbonzini@redhat.com>
      Cc: stable@vger.kernel.org
      Cc: Petr Matousek <pmatouse@redhat.com>
      Cc: Gleb Natapov <gleb@kernel.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d974baa3
  5. 17 10月, 2014 2 次提交