1. 31 5月, 2019 1 次提交
    • Y
      x86/mce: Handle varying MCA bank counts · 75a96196
      Yazen Ghannam 提交于
      [ Upstream commit 006c077041dc73b9490fffc4c6af5befe0687110 ]
      
      Linux reads MCG_CAP[Count] to find the number of MCA banks visible to a
      CPU. Currently, this number is the same for all CPUs and a warning is
      shown if there is a difference. The number of banks is overwritten with
      the MCG_CAP[Count] value of each following CPU that boots.
      
      According to the Intel SDM and AMD APM, the MCG_CAP[Count] value gives
      the number of banks that are available to a "processor implementation".
      The AMD BKDGs/PPRs further clarify that this value is per core. This
      value has historically been the same for every core in the system, but
      that is not an architectural requirement.
      
      Future AMD systems may have different MCG_CAP[Count] values per core,
      so the assumption that all CPUs will have the same MCG_CAP[Count] value
      will no longer be valid.
      
      Also, the first CPU to boot will allocate the struct mce_banks[] array
      using the number of banks based on its MCG_CAP[Count] value. The machine
      check handler and other functions use the global number of banks to
      iterate and index into the mce_banks[] array. So it's possible to use an
      out-of-bounds index on an asymmetric system where a following CPU sees a
      MCG_CAP[Count] value greater than its predecessors.
      
      Thus, allocate the mce_banks[] array to the maximum number of banks.
      This will avoid the potential out-of-bounds index since the value of
      mca_cfg.banks is capped to MAX_NR_BANKS.
      
      Set the value of mca_cfg.banks equal to the max of the previous value
      and the value for the current CPU. This way mca_cfg.banks will always
      represent the max number of banks detected on any CPU in the system.
      
      This will ensure that all CPUs will access all the banks that are
      visible to them. A CPU that can access fewer than the max number of
      banks will find the registers of the extra banks to be read-as-zero.
      
      Furthermore, print the resulting number of MCA banks in use. Do this in
      mcheck_late_init() so that the final value is printed after all CPUs
      have been initialized.
      
      Finally, get bank count from target CPU when doing injection with mce-inject
      module.
      
       [ bp: Remove out-of-bounds example, passify and cleanup commit message. ]
      Signed-off-by: NYazen Ghannam <yazen.ghannam@amd.com>
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: linux-edac <linux-edac@vger.kernel.org>
      Cc: Pu Wen <puwen@hygon.cn>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Vishal Verma <vishal.l.verma@intel.com>
      Cc: x86-ml <x86@kernel.org>
      Link: https://lkml.kernel.org/r/20180727214009.78289-1-Yazen.Ghannam@amd.comSigned-off-by: NSasha Levin <sashal@kernel.org>
      75a96196
  2. 06 5月, 2018 1 次提交
  3. 24 3月, 2018 1 次提交
  4. 14 6月, 2017 4 次提交
  5. 24 1月, 2017 1 次提交
  6. 03 2月, 2016 1 次提交
  7. 27 8月, 2014 1 次提交
    • C
      x86: Replace __get_cpu_var uses · 89cbc767
      Christoph Lameter 提交于
      __get_cpu_var() is used for multiple purposes in the kernel source. One of
      them is address calculation via the form &__get_cpu_var(x).  This calculates
      the address for the instance of the percpu variable of the current processor
      based on an offset.
      
      Other use cases are for storing and retrieving data from the current
      processors percpu area.  __get_cpu_var() can be used as an lvalue when
      writing data or on the right side of an assignment.
      
      __get_cpu_var() is defined as :
      
      #define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
      
      __get_cpu_var() always only does an address determination. However, store
      and retrieve operations could use a segment prefix (or global register on
      other platforms) to avoid the address calculation.
      
      this_cpu_write() and this_cpu_read() can directly take an offset into a
      percpu area and use optimized assembly code to read and write per cpu
      variables.
      
      This patch converts __get_cpu_var into either an explicit address
      calculation using this_cpu_ptr() or into a use of this_cpu operations that
      use the offset.  Thereby address calculations are avoided and less registers
      are used when code is generated.
      
      Transformations done to __get_cpu_var()
      
      1. Determine the address of the percpu instance of the current processor.
      
      	DEFINE_PER_CPU(int, y);
      	int *x = &__get_cpu_var(y);
      
          Converts to
      
      	int *x = this_cpu_ptr(&y);
      
      2. Same as #1 but this time an array structure is involved.
      
      	DEFINE_PER_CPU(int, y[20]);
      	int *x = __get_cpu_var(y);
      
          Converts to
      
      	int *x = this_cpu_ptr(y);
      
      3. Retrieve the content of the current processors instance of a per cpu
      variable.
      
      	DEFINE_PER_CPU(int, y);
      	int x = __get_cpu_var(y)
      
         Converts to
      
      	int x = __this_cpu_read(y);
      
      4. Retrieve the content of a percpu struct
      
      	DEFINE_PER_CPU(struct mystruct, y);
      	struct mystruct x = __get_cpu_var(y);
      
         Converts to
      
      	memcpy(&x, this_cpu_ptr(&y), sizeof(x));
      
      5. Assignment to a per cpu variable
      
      	DEFINE_PER_CPU(int, y)
      	__get_cpu_var(y) = x;
      
         Converts to
      
      	__this_cpu_write(y, x);
      
      6. Increment/Decrement etc of a per cpu variable
      
      	DEFINE_PER_CPU(int, y);
      	__get_cpu_var(y)++
      
         Converts to
      
      	__this_cpu_inc(y)
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: x86@kernel.org
      Acked-by: NH. Peter Anvin <hpa@linux.intel.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NChristoph Lameter <cl@linux.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      89cbc767
  8. 05 6月, 2013 1 次提交
  9. 04 8月, 2012 2 次提交
  10. 17 12月, 2011 1 次提交
  11. 08 11月, 2011 1 次提交
  12. 10 10月, 2011 1 次提交
  13. 18 3月, 2011 1 次提交
  14. 07 1月, 2011 2 次提交
    • D
      x86, NMI: Remove DIE_NMI_IPI · c410b830
      Don Zickus 提交于
      With priorities in place and no one really understanding the difference between
      DIE_NMI and DIE_NMI_IPI, just remove DIE_NMI_IPI and convert everyone to DIE_NMI.
      
      This also simplifies default_do_nmi() a little bit.  Instead of calling the
      die_notifier in both the if and else part, just pull it out and call it before
      the if-statement.  This has the side benefit of avoiding a call to the ioport
      to see if there is an external NMI sitting around until after the (more frequent)
      internal NMIs are dealt with.
      Patch-Inspired-by: NHuang Ying <ying.huang@intel.com>
      Signed-off-by: NDon Zickus <dzickus@redhat.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      LKML-Reference: <1294348732-15030-5-git-send-email-dzickus@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      c410b830
    • D
      x86, NMI: Add priorities to handlers · 166d7514
      Don Zickus 提交于
      In order to consolidate the NMI die_chain events, we need to setup the priorities
      for the die notifiers.
      
      I started by defining a bunch of common priorities that can be used by the
      notifier blocks.  Then I modified the notifier blocks to use the newly created
      priorities.
      
      Now that the priorities are straightened out, it should be easier to remove the
      event DIE_NMI_IPI.
      Signed-off-by: NDon Zickus <dzickus@redhat.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      LKML-Reference: <1294348732-15030-4-git-send-email-dzickus@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      166d7514
  15. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  16. 04 11月, 2009 1 次提交
  17. 23 9月, 2009 1 次提交
    • H
      x86: mce, inject: Use real inject-msg in raise_local · 14c0abf1
      Huang Ying 提交于
      Current raise_local() uses a struct mce that comes from mce_write()
      as a parameter instead of the real inject-msg, so when we set
      mce.finished = 0 to clear injected MCE, the real inject stays
      valid.
      
      This will cause the remaining inject-msg affect the next injection,
      which is not desired.
      
      To fix this, real inject-msg is used in raise_local instead of the
      one on the stack.
      
      This patch is based on the diagnosis and the fixes by Dean Nelson.
      Reported-by: NDean Nelson <dnelson@redhat.com>
      Signed-off-by: NHuang Ying <ying.huang@intel.com>
      Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      LKML-Reference: <1253601357.15717.757.camel@yhuang-dev.sh.intel.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      14c0abf1
  18. 11 8月, 2009 2 次提交
  19. 04 6月, 2009 2 次提交
  20. 29 5月, 2009 3 次提交