- 09 10月, 2013 10 次提交
-
-
由 Mel Gorman 提交于
NUMA hinting fault counts and placement decisions are both recorded in the same array which distorts the samples in an unpredictable fashion. The values linearly accumulate during the scan and then decay creating a sawtooth-like pattern in the per-node counts. It also means that placement decisions are time sensitive. At best it means that it is very difficult to state that the buffer holds a decaying average of past faulting behaviour. At worst, it can confuse the load balancer if it sees one node with an artifically high count due to very recent faulting activity and may create a bouncing effect. This patch adds a second array. numa_faults stores the historical data which is used for placement decisions. numa_faults_buffer holds the fault activity during the current scan window. When the scan completes, numa_faults decays and the values from numa_faults_buffer are copied across. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-22-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch selects a preferred node for a task to run on based on the NUMA hinting faults. This information is later used to migrate tasks towards the node during balancing. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-21-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch tracks what nodes numa hinting faults were incurred on. This information is later used to schedule a task on the node storing the pages most frequently faulted by the task. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
NUMA PTE scanning slows if a NUMA hinting fault was trapped and no page was migrated. For long-lived but idle processes there may be no faults but the scan rate will be high and just waste CPU. This patch will slow the scan rate for processes that are not trapping faults. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-19-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
The NUMA PTE scan rate is controlled with a combination of the numa_balancing_scan_period_min, numa_balancing_scan_period_max and numa_balancing_scan_size. This scan rate is independent of the size of the task and as an aside it is further complicated by the fact that numa_balancing_scan_size controls how many pages are marked pte_numa and not how much virtual memory is scanned. In combination, it is almost impossible to meaningfully tune the min and max scan periods and reasoning about performance is complex when the time to complete a full scan is is partially a function of the tasks memory size. This patch alters the semantic of the min and max tunables to be about tuning the length time it takes to complete a scan of a tasks occupied virtual address space. Conceptually this is a lot easier to understand. There is a "sanity" check to ensure the scan rate is never extremely fast based on the amount of virtual memory that should be scanned in a second. The default of 2.5G seems arbitrary but it is to have the maximum scan rate after the patch roughly match the maximum scan rate before the patch was applied. On a similar note, numa_scan_period is in milliseconds and not jiffies. Properly placed pages slow the scanning rate but adding 10 jiffies to numa_scan_period means that the rate scanning slows depends on HZ which is confusing. Get rid of the jiffies_to_msec conversion and treat it as ms. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-18-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Scan delay logic and resets are currently initialised to start scanning immediately instead of delaying properly. Initialise them properly at fork time and catch when a new mm has been allocated. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-17-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
PTE scanning and NUMA hinting fault handling is expensive so commit 5bca2303 ("mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node") deferred the PTE scan until a task had been scheduled on another node. The problem is that in the purely shared memory case that this may never happen and no NUMA hinting fault information will be captured. We are not ruling out the possibility that something better can be done here but for now, this patch needs to be reverted and depend entirely on the scan_delay to avoid punishing short-lived processes. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-16-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Avoiding marking PTEs pte_numa because a particular NUMA node is migrate rate limited sees like a bad idea. Even if this node can't migrate anymore other nodes might and we want up-to-date information to do balance decisions. We already rate limit the actual migrations, this should leave enough bandwidth to allow the non-migrating scanning. I think its important we keep up-to-date information if we're going to do placement based on it. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-15-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
With a trace_printk("working\n"); right after the cmpxchg in task_numa_work() we can see that of a 4 thread process, its always the same task winning the race and doing the protection change. This is a problem since the task doing the protection change has a penalty for taking faults -- it is busy when marking the PTEs. If its always the same task the ->numa_faults[] get severely skewed. Avoid this by delaying the task doing the protection change such that it is unlikely to win the privilege again. Before: root@interlagos:~# grep "thread 0/.*working" /debug/tracing/trace | tail -15 thread 0/0-3232 [022] .... 212.787402: task_numa_work: working thread 0/0-3232 [022] .... 212.888473: task_numa_work: working thread 0/0-3232 [022] .... 212.989538: task_numa_work: working thread 0/0-3232 [022] .... 213.090602: task_numa_work: working thread 0/0-3232 [022] .... 213.191667: task_numa_work: working thread 0/0-3232 [022] .... 213.292734: task_numa_work: working thread 0/0-3232 [022] .... 213.393804: task_numa_work: working thread 0/0-3232 [022] .... 213.494869: task_numa_work: working thread 0/0-3232 [022] .... 213.596937: task_numa_work: working thread 0/0-3232 [022] .... 213.699000: task_numa_work: working thread 0/0-3232 [022] .... 213.801067: task_numa_work: working thread 0/0-3232 [022] .... 213.903155: task_numa_work: working thread 0/0-3232 [022] .... 214.005201: task_numa_work: working thread 0/0-3232 [022] .... 214.107266: task_numa_work: working thread 0/0-3232 [022] .... 214.209342: task_numa_work: working After: root@interlagos:~# grep "thread 0/.*working" /debug/tracing/trace | tail -15 thread 0/0-3253 [005] .... 136.865051: task_numa_work: working thread 0/2-3255 [026] .... 136.965134: task_numa_work: working thread 0/3-3256 [024] .... 137.065217: task_numa_work: working thread 0/3-3256 [024] .... 137.165302: task_numa_work: working thread 0/3-3256 [024] .... 137.265382: task_numa_work: working thread 0/0-3253 [004] .... 137.366465: task_numa_work: working thread 0/2-3255 [026] .... 137.466549: task_numa_work: working thread 0/0-3253 [004] .... 137.566629: task_numa_work: working thread 0/0-3253 [004] .... 137.666711: task_numa_work: working thread 0/1-3254 [028] .... 137.766799: task_numa_work: working thread 0/0-3253 [004] .... 137.866876: task_numa_work: working thread 0/2-3255 [026] .... 137.966960: task_numa_work: working thread 0/1-3254 [028] .... 138.067041: task_numa_work: working thread 0/2-3255 [026] .... 138.167123: task_numa_work: working thread 0/3-3256 [024] .... 138.267207: task_numa_work: working Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-14-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Fix a 80 column violation and a PTE vs PMD reference. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-4-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 10月, 2013 1 次提交
-
-
由 Shawn Bohrer 提交于
In 76854c7e ("sched: Use rt.nr_cpus_allowed to recover select_task_rq() cycles") an optimization was added to select_task_rq_rt() that immediately returns when p->nr_cpus_allowed == 1 at the beginning of the function. This makes the latter p->nr_cpus_allowed > 1 check redundant, which can now be removed. Signed-off-by: NShawn Bohrer <sbohrer@rgmadvisors.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: tomk@rgmadvisors.com Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1380914693-24634-1-git-send-email-shawn.bohrer@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 10月, 2013 4 次提交
-
-
由 Frederic Weisbecker 提交于
The commit facd8b80 ("irq: Sanitize invoke_softirq") converted irq exit calls of do_softirq() to __do_softirq() on all architectures, assuming it was only used there for its irq disablement properties. But as a side effect, the softirqs processed in the end of the hardirq are always called on the inline current stack that is used by irq_exit() instead of the softirq stack provided by the archs that override do_softirq(). The result is mostly safe if the architecture runs irq_exit() on a separate irq stack because then softirqs are processed on that same stack that is near empty at this stage (assuming hardirq aren't nesting). Otherwise irq_exit() runs in the task stack and so does the softirq too. The interrupted call stack can be randomly deep already and the softirq can dig through it even further. To add insult to the injury, this softirq can be interrupted by a new hardirq, maximizing the chances for a stack overrun as reported in powerpc for example: do_IRQ: stack overflow: 1920 CPU: 0 PID: 1602 Comm: qemu-system-ppc Not tainted 3.10.4-300.1.fc19.ppc64p7 #1 Call Trace: [c0000000050a8740] .show_stack+0x130/0x200 (unreliable) [c0000000050a8810] .dump_stack+0x28/0x3c [c0000000050a8880] .do_IRQ+0x2b8/0x2c0 [c0000000050a8930] hardware_interrupt_common+0x154/0x180 --- Exception: 501 at .cp_start_xmit+0x3a4/0x820 [8139cp] LR = .cp_start_xmit+0x390/0x820 [8139cp] [c0000000050a8d40] .dev_hard_start_xmit+0x394/0x640 [c0000000050a8e00] .sch_direct_xmit+0x110/0x260 [c0000000050a8ea0] .dev_queue_xmit+0x260/0x630 [c0000000050a8f40] .br_dev_queue_push_xmit+0xc4/0x130 [bridge] [c0000000050a8fc0] .br_dev_xmit+0x198/0x270 [bridge] [c0000000050a9070] .dev_hard_start_xmit+0x394/0x640 [c0000000050a9130] .dev_queue_xmit+0x428/0x630 [c0000000050a91d0] .ip_finish_output+0x2a4/0x550 [c0000000050a9290] .ip_local_out+0x50/0x70 [c0000000050a9310] .ip_queue_xmit+0x148/0x420 [c0000000050a93b0] .tcp_transmit_skb+0x4e4/0xaf0 [c0000000050a94a0] .__tcp_ack_snd_check+0x7c/0xf0 [c0000000050a9520] .tcp_rcv_established+0x1e8/0x930 [c0000000050a95f0] .tcp_v4_do_rcv+0x21c/0x570 [c0000000050a96c0] .tcp_v4_rcv+0x734/0x930 [c0000000050a97a0] .ip_local_deliver_finish+0x184/0x360 [c0000000050a9840] .ip_rcv_finish+0x148/0x400 [c0000000050a98d0] .__netif_receive_skb_core+0x4f8/0xb00 [c0000000050a99d0] .netif_receive_skb+0x44/0x110 [c0000000050a9a70] .br_handle_frame_finish+0x2bc/0x3f0 [bridge] [c0000000050a9b20] .br_nf_pre_routing_finish+0x2ac/0x420 [bridge] [c0000000050a9bd0] .br_nf_pre_routing+0x4dc/0x7d0 [bridge] [c0000000050a9c70] .nf_iterate+0x114/0x130 [c0000000050a9d30] .nf_hook_slow+0xb4/0x1e0 [c0000000050a9e00] .br_handle_frame+0x290/0x330 [bridge] [c0000000050a9ea0] .__netif_receive_skb_core+0x34c/0xb00 [c0000000050a9fa0] .netif_receive_skb+0x44/0x110 [c0000000050aa040] .napi_gro_receive+0xe8/0x120 [c0000000050aa0c0] .cp_rx_poll+0x31c/0x590 [8139cp] [c0000000050aa1d0] .net_rx_action+0x1dc/0x310 [c0000000050aa2b0] .__do_softirq+0x158/0x330 [c0000000050aa3b0] .irq_exit+0xc8/0x110 [c0000000050aa430] .do_IRQ+0xdc/0x2c0 [c0000000050aa4e0] hardware_interrupt_common+0x154/0x180 --- Exception: 501 at .bad_range+0x1c/0x110 LR = .get_page_from_freelist+0x908/0xbb0 [c0000000050aa7d0] .list_del+0x18/0x50 (unreliable) [c0000000050aa850] .get_page_from_freelist+0x908/0xbb0 [c0000000050aa9e0] .__alloc_pages_nodemask+0x21c/0xae0 [c0000000050aaba0] .alloc_pages_vma+0xd0/0x210 [c0000000050aac60] .handle_pte_fault+0x814/0xb70 [c0000000050aad50] .__get_user_pages+0x1a4/0x640 [c0000000050aae60] .get_user_pages_fast+0xec/0x160 [c0000000050aaf10] .__gfn_to_pfn_memslot+0x3b0/0x430 [kvm] [c0000000050aafd0] .kvmppc_gfn_to_pfn+0x64/0x130 [kvm] [c0000000050ab070] .kvmppc_mmu_map_page+0x94/0x530 [kvm] [c0000000050ab190] .kvmppc_handle_pagefault+0x174/0x610 [kvm] [c0000000050ab270] .kvmppc_handle_exit_pr+0x464/0x9b0 [kvm] [c0000000050ab320] kvm_start_lightweight+0x1ec/0x1fc [kvm] [c0000000050ab4f0] .kvmppc_vcpu_run_pr+0x168/0x3b0 [kvm] [c0000000050ab9c0] .kvmppc_vcpu_run+0xc8/0xf0 [kvm] [c0000000050aba50] .kvm_arch_vcpu_ioctl_run+0x5c/0x1a0 [kvm] [c0000000050abae0] .kvm_vcpu_ioctl+0x478/0x730 [kvm] [c0000000050abc90] .do_vfs_ioctl+0x4ec/0x7c0 [c0000000050abd80] .SyS_ioctl+0xd4/0xf0 [c0000000050abe30] syscall_exit+0x0/0x98 Since this is a regression, this patch proposes a minimalistic and low-risk solution by blindly forcing the hardirq exit processing of softirqs on the softirq stack. This way we should reduce significantly the opportunities for task stack overflow dug by softirqs. Longer term solutions may involve extending the hardirq stack coverage to irq_exit(), etc... Reported-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: #3.9.. <stable@vger.kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@au1.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Mackerras <paulus@au1.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Andrew Morton <akpm@linux-foundation.org>
-
由 Oleg Nesterov 提交于
"case 0" in free_pid() assumes that disable_pid_allocation() should clear PIDNS_HASH_ADDING before the last pid goes away. However this doesn't happen if the first fork() fails to create the child reaper which should call disable_pid_allocation(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: N"Eric W. Biederman" <ebiederm@xmission.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tetsuo Handa 提交于
If /proc/sys/kernel/core_pattern contains only "|", a NULL pointer dereference happens upon core dump because argv_split("") returns argv[0] == NULL. This bug was once fixed by commit 264b83c0 ("usermodehelper: check subprocess_info->path != NULL") but was by error reintroduced by commit 7f57cfa4 ("usermodehelper: kill the sub_info->path[0] check"). This bug seems to exist since 2.6.19 (the version which core dump to pipe was added). Depending on kernel version and config, some side effect might happen immediately after this oops (e.g. kernel panic with 2.6.32-358.18.1.el6). Signed-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rafael J. Wysocki 提交于
Recent commit 8fd37a4c (PM / hibernate: Create memory bitmaps after freezing user space) broke the resume part of the user space driven hibernation (s2disk), because I forgot that the resume utility loaded the image into memory without freezing user space (it still freezes tasks after loading the image). This means that during user space driven resume we need to create the memory bitmaps at the "device open" time rather than at the "freeze tasks" time, so make that happen (that's a special case anyway, so it needs to be treated in a special way). Reported-and-tested-by: NRonald <ronald645@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 29 9月, 2013 1 次提交
-
-
由 Jean Delvare 提交于
Commit 6072ddc8 ("kernel: replace strict_strto*() with kstrto*()") broke the handling of signed integer types, fix it. Signed-off-by: NJean Delvare <khali@linux-fr.org> Reported-by: NChristian Kujau <lists@nerdbynature.de> Tested-by: NChristian Kujau <lists@nerdbynature.de> Cc: Jingoo Han <jg1.han@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 9月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
ad65782f (context_tracking: Optimize main APIs off case with static key) converted context tracking main APIs to inline function and left ARM asm callers behind. This can be easily fixed by making ARM calling the post static keys context tracking function. We just need to replicate the static key checks there. We'll remove these later when ARM will support the context tracking static keys. Reported-by: NGuenter Roeck <linux@roeck-us.net> Reported-by: NRussell King <linux@arm.linux.org.uk> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Tested-by: NKevin Hilman <khilman@linaro.org> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Anil Kumar <anilk4.v@gmail.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Russell King <linux@arm.linux.org.uk> Cc: Kevin Hilman <khilman@linaro.org>
-
- 25 9月, 2013 12 次提交
-
-
由 Peter Zijlstra 提交于
When using per-cpu preempt_count variables we need to save/restore the preempt_count on context switch (into per task storage; for instance the old thread_info::preempt_count variable) because of PREEMPT_ACTIVE. However, this means that on fork() the preempt_count value of the last context switch gets copied and if we had a PREEMPT_ACTIVE switch right before cloning a child task the child task will now too have PREEMPT_ACTIVE set and start its life with an extra PREEMPT_ACTIVE count. Therefore we need to make init_task_preempt_count() unconditional; this resets whatever preempt_count we inherited from our parent process. Doing so for !per-cpu implementations is harmless. For !PREEMPT_COUNT kernels we need to be careful not to start life with an increased preempt_count. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-4k0b7oy1rcdyzochwiixuwi9@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Rewrite the preempt_count macros in order to extract the 3 basic preempt_count value modifiers: __preempt_count_add() __preempt_count_sub() and the new: __preempt_count_dec_and_test() And since we're at it anyway, replace the unconventional $op_preempt_count names with the more conventional preempt_count_$op. Since these basic operators are equivalent to the previous _notrace() variants, do away with the _notrace() versions. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
We need a few special preempt_count accessors: - task_preempt_count() for when we're interested in the preemption count of another (non-running) task. - init_task_preempt_count() for properly initializing the preemption count. - init_idle_preempt_count() a special case of the above for the idle threads. With these no generic code ever touches thread_info::preempt_count anymore and architectures could choose to remove it. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-jf5swrio8l78j37d06fzmo4r@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
In order to combine the preemption and need_resched test we need to fold the need_resched information into the preempt_count value. Since the NEED_RESCHED flag is set across CPUs this needs to be an atomic operation, however we very much want to avoid making preempt_count atomic, therefore we keep the existing TIF_NEED_RESCHED infrastructure in place but at 3 sites test it and fold its value into preempt_count; namely: - resched_task() when setting TIF_NEED_RESCHED on the current task - scheduler_ipi() when resched_task() sets TIF_NEED_RESCHED on a remote task it follows it up with a reschedule IPI and we can modify the cpu local preempt_count from there. - cpu_idle_loop() for when resched_task() found tsk_is_polling(). We use an inverted bitmask to indicate need_resched so that a 0 means both need_resched and !atomic. Also remove the barrier() in preempt_enable() between preempt_enable_no_resched() and preempt_check_resched() to avoid having to reload the preemption value and allow the compiler to use the flags of the previuos decrement. I couldn't come up with any sane reason for this barrier() to be there as preempt_enable_no_resched() already has a barrier() before doing the decrement. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-7a7m5qqbn5pmwnd4wko9u6da@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Replace the single preempt_count() 'function' that's an lvalue with two proper functions: preempt_count() - returns the preempt_count value as rvalue preempt_count_set() - Allows setting the preempt-count value Also provide preempt_count_ptr() as a convenience wrapper to implement all modifying operations. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-orxrbycjozopqfhb4dxdkdvb@git.kernel.org [ Fixed build failure. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Mike reported that commit 7d1a9417 ("x86: Use generic idle loop") regressed several workloads and caused excessive reschedule interrupts. The patch in question failed to notice that the x86 code had an inverted sense of the polling state versus the new generic code (x86: default polling, generic: default !polling). Fix the two prominent x86 mwait based idle drivers and introduce a few new generic polling helpers (fixing the wrong smp_mb__after_clear_bit usage). Also switch the idle routines to using tif_need_resched() which is an immediate TIF_NEED_RESCHED test as opposed to need_resched which will end up being slightly different. Reported-by: NMike Galbraith <bitbucket@online.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: lenb@kernel.org Cc: tglx@linutronix.de Link: http://lkml.kernel.org/n/tip-nc03imb0etuefmzybzj7sprf@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
We're going to deprecate and remove set_need_resched() for it will do the wrong thing. Make an exception for RCU and allow it to use resched_cpu() which will do the right thing. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/n/tip-2eywnacjl1nllctl1nszqa5w@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Michael S. Tsirkin 提交于
We always know the rq used, let's just pass it around. This seems to cut the size of scheduler core down a tiny bit: Before: [linux]$ size kernel/sched/core.o.orig text data bss dec hex filename 62760 16130 3876 82766 1434e kernel/sched/core.o.orig After: [linux]$ size kernel/sched/core.o.patched text data bss dec hex filename 62566 16130 3876 82572 1428c kernel/sched/core.o.patched Probably speeds it up as well. Signed-off-by: NMichael S. Tsirkin <mst@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130922142054.GA11499@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Chuansheng Liu 提交于
Commit 1b3a5d02 ("reboot: move arch/x86 reboot= handling to generic kernel") did some cleanup for reboot= command line, but it made the reboot_default inoperative. The default value of variable reboot_default should be 1, and if command line reboot= is not set, system will use the default reboot mode. [akpm@linux-foundation.org: fix comment layout] Signed-off-by: NLi Fei <fei.li@intel.com> Signed-off-by: Nliu chuansheng <chuansheng.liu@intel.com> Acked-by: NRobin Holt <robinmholt@linux.com> Cc: <stable@vger.kernel.org> [3.11.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
After commit 82919919 ("kernel/audit.c: avoid negative sleep durations") audit emitters will block forever if userspace daemon cannot handle backlog. After the timeout the waiting loop turns into busy loop and runs until daemon dies or returns back to work. This is a minimal patch for that bug. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Richard Guy Briggs <rgb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Chuck Anderson <chuck.anderson@oracle.com> Cc: Dan Duval <dan.duval@oracle.com> Cc: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
watchdog_tresh controls how often nmi perf event counter checks per-cpu hrtimer_interrupts counter and blows up if the counter hasn't changed since the last check. The counter is updated by per-cpu watchdog_hrtimer hrtimer which is scheduled with 2/5 watchdog_thresh period which guarantees that hrtimer is scheduled 2 times per the main period. Both hrtimer and perf event are started together when the watchdog is enabled. So far so good. But... But what happens when watchdog_thresh is updated from sysctl handler? proc_dowatchdog will set a new sampling period and hrtimer callback (watchdog_timer_fn) will use the new value in the next round. The problem, however, is that nobody tells the perf event that the sampling period has changed so it is ticking with the period configured when it has been set up. This might result in an ear ripping dissonance between perf and hrtimer parts if the watchdog_thresh is increased. And even worse it might lead to KABOOM if the watchdog is configured to panic on such a spurious lockup. This patch fixes the issue by updating both nmi perf even counter and hrtimers if the threshold value has changed. The nmi one is disabled and then reinitialized from scratch. This has an unpleasant side effect that the allocation of the new event might fail theoretically so the hard lockup detector would be disabled for such cpus. On the other hand such a memory allocation failure is very unlikely because the original event is deallocated right before. It would be much nicer if we just changed perf event period but there doesn't seem to be any API to do that right now. It is also unfortunate that perf_event_alloc uses GFP_KERNEL allocation unconditionally so we cannot use on_each_cpu() and do the same thing from the per-cpu context. The update from the current CPU should be safe because perf_event_disable removes the event atomically before it clears the per-cpu watchdog_ev so it cannot change anything under running handler feet. The hrtimer is simply restarted (thanks to Don Zickus who has pointed this out) if it is queued because we cannot rely it will fire&adopt to the new sampling period before a new nmi event triggers (when the treshold is decreased). [akpm@linux-foundation.org: the UP version of __smp_call_function_single ended up in the wrong place] Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Fabio Estevam <festevam@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
proc_dowatchdog doesn't synchronize multiple callers which might lead to confusion when two parallel callers might confuse watchdog_enable_all_cpus resp watchdog_disable_all_cpus (eg watchdog gets enabled even if watchdog_thresh was set to 0 already). This patch adds a local mutex which synchronizes callers to the sysctl handler. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 9月, 2013 8 次提交
-
-
由 Jason Low 提交于
This patch builds on patch 2 and periodically decays that max value to do idle balancing per sched domain by approximately 1% per second. Also decay the rq's max_idle_balance_cost value. Signed-off-by: NJason Low <jason.low2@hp.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-4-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jason Low 提交于
In this patch, we keep track of the max cost we spend doing idle load balancing for each sched domain. If the avg time the CPU remains idle is less then the time we have already spent on idle balancing + the max cost of idle balancing in the sched domain, then we don't continue to attempt the balance. We also keep a per rq variable, max_idle_balance_cost, which keeps track of the max time spent on newidle load balances throughout all its domains so that we can determine the avg_idle's max value. By using the max, we avoid overrunning the average. This further reduces the chance we attempt balancing when the CPU is not idle for longer than the cost to balance. Signed-off-by: NJason Low <jason.low2@hp.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jason Low 提交于
When updating avg_idle, if the delta exceeds some max value, then avg_idle gets set to the max, regardless of what the previous avg was. This can cause avg_idle to often be overestimated. This patch modifies the way we update avg_idle by always updating it with the function call to update_avg() first. Then, if avg_idle exceeds the max, we set it to the max. Signed-off-by: NJason Low <jason.low2@hp.com> Reviewed-by: NRik van Riel <riel@redhat.com> Reviewed-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-2-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vladimir Davydov 提交于
Currently new_dst_cpu is prevented from being reselected actually, not dst_cpu. This can result in attempting to pull tasks to this_cpu twice. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/281f59b6e596c718dd565ad267fc38f5b8e5c995.1379265590.git.vdavydov@parallels.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vladimir Davydov 提交于
Patch a003a2 (sched: Consider runnable load average in move_tasks()) sets all top-level cfs_rqs' h_load to rq->avg.load_avg_contrib, which is always 0. This mistype leads to all tasks having weight 0 when load balancing in a cpu-cgroup enabled setup. There obviously should be sum of weights of all runnable tasks there instead. Fix it. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Reviewed-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379173186-11944-1-git-send-email-vdavydov@parallels.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vladimir Davydov 提交于
In busiest->group_imb case we can come to fix_small_imbalance() with local->avg_load > busiest->avg_load. This can result in wrong imbalance fix-up, because there is the following check there where all the members are unsigned: if (busiest->avg_load - local->avg_load + scaled_busy_load_per_task >= (scaled_busy_load_per_task * imbn)) { env->imbalance = busiest->load_per_task; return; } As a result we can end up constantly bouncing tasks from one cpu to another if there are pinned tasks. Fix it by substituting the subtraction with an equivalent addition in the check. [ The bug can be caught by running 2*N cpuhogs pinned to two logical cpus belonging to different cores on an HT-enabled machine with N logical cpus: just look at se.nr_migrations growth. ] Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/ef167822e5c5b2d96cf5b0e3e4f4bdff3f0414a2.1379252740.git.vdavydov@parallels.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vladimir Davydov 提交于
In busiest->group_imb case we can come to calculate_imbalance() with local->avg_load >= busiest->avg_load >= sds->avg_load. This can result in imbalance overflow, because it is calculated as follows env->imbalance = min( max_pull * busiest->group_power, (sds->avg_load - local->avg_load) * local->group_power) / SCHED_POWER_SCALE; As a result we can end up constantly bouncing tasks from one cpu to another if there are pinned tasks. Fix this by skipping the assignment and assuming imbalance=0 in case local->avg_load > sds->avg_load. [ The bug can be caught by running 2*N cpuhogs pinned to two logical cpus belonging to different cores on an HT-enabled machine with N logical cpus: just look at se.nr_migrations growth. ] Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/8f596cc6bc0e5e655119dc892c9bfcad26e971f4.1379252740.git.vdavydov@parallels.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Solve the problems around the broken definition of perf_event_mmap_page:: cap_usr_time and cap_usr_rdpmc fields which used to overlap, partially fixed by: 860f085b ("perf: Fix broken union in 'struct perf_event_mmap_page'") The problem with the fix (merged in v3.12-rc1 and not yet released officially), noticed by Vince Weaver is that the new behavior is not detectable by new user-space, and that due to the reuse of the field names it's easy to mis-compile a binary if old headers are used on a new kernel or new headers are used on an old kernel. To solve all that make this change explicit, detectable and self-contained, by iterating the ABI the following way: - Always clear bit 0, and rename it to usrpage->cap_bit0, to at least not confuse old user-space binaries. RDPMC will be marked as unavailable to old binaries but that's within the ABI, this is a capability bit. - Rename bit 1 to ->cap_bit0_is_deprecated and always set it to 1, so new libraries can reliably detect that bit 0 is deprecated and perma-zero without having to check the kernel version. - Use bits 2, 3, 4 for the newly defined, correct functionality: cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ cap_user_time : 1, /* The time_* fields are used */ cap_user_time_zero : 1, /* The time_zero field is used */ - Rename all the bitfield names in perf_event.h to be different from the old names, to make sure it's not possible to mis-compile it accidentally with old assumptions. The 'size' field can then be used in the future to add new fields and it will act as a natural ABI version indicator as well. Also adjust tools/perf/ userspace for the new definitions, noticed by Adrian Hunter. Reported-by: NVince Weaver <vincent.weaver@maine.edu> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Also-Fixed-by: NAdrian Hunter <adrian.hunter@intel.com> Link: http://lkml.kernel.org/n/tip-zr03yxjrpXesOzzupszqglbv@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 9月, 2013 1 次提交
-
-
由 Michael S. Tsirkin 提交于
sched_info_depart seems to be only called from sched_info_switch(), so only on involuntary task switch. Fix the comment to match. Signed-off-by: NMichael S. Tsirkin <mst@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Link: http://lkml.kernel.org/r/20130916083036.GA1113@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 9月, 2013 2 次提交
-
-
由 Martin Schwidefsky 提交于
After the last architecture switched to generic hard irqs the config options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code for !CONFIG_GENERIC_HARDIRQS can be removed. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Jingoo Han 提交于
The usage of strict_strto*() is not preferred, because strict_strto*() is obsolete. Thus, kstrto*() should be used. Signed-off-by: NJingoo Han <jg1.han@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-