1. 27 12月, 2019 1 次提交
  2. 12 7月, 2018 1 次提交
    • S
      cgroup/tracing: Move taking of spin lock out of trace event handlers · e4f8d81c
      Steven Rostedt (VMware) 提交于
      It is unwise to take spin locks from the handlers of trace events.
      Mainly, because they can introduce lockups, because it introduces locks
      in places that are normally not tested. Worse yet, because trace events
      are tucked away in the include/trace/events/ directory, locks that are
      taken there are forgotten about.
      
      As a general rule, I tell people never to take any locks in a trace
      event handler.
      
      Several cgroup trace event handlers call cgroup_path() which eventually
      takes the kernfs_rename_lock spinlock. This injects the spinlock in the
      code without people realizing it. It also can cause issues for the
      PREEMPT_RT patch, as the spinlock becomes a mutex, and the trace event
      handlers are called with preemption disabled.
      
      By moving the calculation of the cgroup_path() out of the trace event
      handlers and into a macro (surrounded by a
      trace_cgroup_##type##_enabled()), then we could place the cgroup_path
      into a string, and pass that to the trace event. Not only does this
      remove the taking of the spinlock out of the trace event handler, but
      it also means that the cgroup_path() only needs to be called once (it
      is currently called twice, once to get the length to reserver the
      buffer for, and once again to get the path itself. Now it only needs to
      be done once.
      Reported-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      e4f8d81c
  3. 16 5月, 2018 1 次提交
  4. 27 4月, 2018 4 次提交
    • T
      cgroup: Factor out and expose cgroup_rstat_*() interface functions · 6162cef0
      Tejun Heo 提交于
      cgroup_rstat is being generalized so that controllers can use it too.
      This patch factors out and exposes the following interface functions.
      
      * cgroup_rstat_updated(): Renamed from cgroup_rstat_cpu_updated() for
        consistency.
      
      * cgroup_rstat_flush_hold/release(): Factored out from base stat
        implementation.
      
      * cgroup_rstat_flush(): Verbatim expose.
      
      While at it, drop assert on cgroup_rstat_mutex in
      cgroup_base_stat_flush() as it crosses layers and make a minor comment
      update.
      
      v2: Added EXPORT_SYMBOL_GPL(cgroup_rstat_updated) to fix a build bug.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      6162cef0
    • T
      cgroup: Reorganize kernel/cgroup/rstat.c · a17556f8
      Tejun Heo 提交于
      Currently, rstat.c has rstat and base stat implementations intermixed.
      Collect base stat implementation at the end of the file.  Also,
      reorder the prototypes.
      
      This patch doesn't make any functional changes.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      a17556f8
    • T
      cgroup: Distinguish base resource stat implementation from rstat · d4ff749b
      Tejun Heo 提交于
      Base resource stat accounts universial (not specific to any
      controller) resource consumptions on top of rstat.  Currently, its
      implementation is intermixed with rstat implementation making the code
      confusing to follow.
      
      This patch clarifies the distintion by doing the followings.
      
      * Encapsulate base resource stat counters, currently only cputime, in
        struct cgroup_base_stat.
      
      * Move prev_cputime into struct cgroup and initialize it with cgroup.
      
      * Rename the related functions so that they start with cgroup_base_stat.
      
      * Prefix the related variables and field names with b.
      
      This patch doesn't make any functional changes.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      d4ff749b
    • T
      cgroup: Rename stat to rstat · c58632b3
      Tejun Heo 提交于
      stat is too generic a name and ends up causing subtle confusions.
      It'll be made generic so that controllers can plug into it, which will
      make the problem worse.  Let's rename it to something more specific -
      cgroup_rstat for cgroup recursive stat.
      
      This patch does the following renames.  No other changes.
      
      * cpu_stat	-> rstat_cpu
      * stat		-> rstat
      * ?cstat	-> ?rstatc
      
      Note that the renames are selective.  The unrenamed are the ones which
      implement basic resource statistics on top of rstat.  This will be
      further cleaned up in the following patches.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      c58632b3
  5. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  6. 27 10月, 2017 1 次提交
    • T
      cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat · d41bf8c9
      Tejun Heo 提交于
      The basic cpu stat is currently shown with "cpu." prefix in
      cgroup.stat, and the same information is duplicated in cpu.stat when
      cpu controller is enabled.  This is ugly and not very scalable as we
      want to expand the coverage of stat information which is always
      available.
      
      This patch makes cgroup core always create "cpu.stat" file and show
      the basic cpu stat there and calls the cpu controller to show the
      extra stats when enabled.  This ensures that the same information
      isn't presented in multiple places and makes future expansion of basic
      stats easier.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      d41bf8c9
  7. 25 9月, 2017 1 次提交
    • T
      cgroup: Implement cgroup2 basic CPU usage accounting · 041cd640
      Tejun Heo 提交于
      In cgroup1, while cpuacct isn't actually controlling any resources, it
      is a separate controller due to combination of two factors -
      1. enabling cpu controller has significant side effects, and 2. we
      have to pick one of the hierarchies to account CPU usages on.  cpuacct
      controller is effectively used to designate a hierarchy to track CPU
      usages on.
      
      cgroup2's unified hierarchy removes the second reason and we can
      account basic CPU usages by default.  While we can use cpuacct for
      this purpose, both its interface and implementation leave a lot to be
      desired - it collects and exposes two sources of truth which don't
      agree with each other and some of the exposed statistics don't make
      much sense.  Also, it propagates all the way up the hierarchy on each
      accounting event which is unnecessary.
      
      This patch adds basic resource accounting mechanism to cgroup2's
      unified hierarchy and accounts CPU usages using it.
      
      * All accountings are done per-cpu and don't propagate immediately.
        It just bumps the per-cgroup per-cpu counters and links to the
        parent's updated list if not already on it.
      
      * On a read, the per-cpu counters are collected into the global ones
        and then propagated upwards.  Only the per-cpu counters which have
        changed since the last read are propagated.
      
      * CPU usage stats are collected and shown in "cgroup.stat" with "cpu."
        prefix.  Total usage is collected from scheduling events.  User/sys
        breakdown is sourced from tick sampling and adjusted to the usage
        using cputime_adjust().
      
      This keeps the accounting side hot path O(1) and per-cpu and the read
      side O(nr_updated_since_last_read).
      
      v2: Minor changes and documentation updates as suggested by Waiman and
          Roman.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Waiman Long <longman@redhat.com>
      Cc: Roman Gushchin <guro@fb.com>
      041cd640
  8. 21 7月, 2017 3 次提交
    • W
      cgroup: update debug controller to print out thread mode information · 7a0cf0e7
      Waiman Long 提交于
      Update debug controller so that it prints out debug info about thread
      mode.
      
       1) The relationship between proc_cset and threaded_csets are displayed.
       2) The status of being a thread root or threaded cgroup is displayed.
      
      This patch is extracted from Waiman's larger patch.
      
      v2: - Removed [thread root] / [threaded] from debug.cgroup_css_links
            file as the same information is available from cgroup.type.
            Suggested by Waiman.
          - Threaded marking is moved to the previous patch.
      Patch-originally-by: NWaiman Long <longman@redhat.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      7a0cf0e7
    • T
      cgroup: implement cgroup v2 thread support · 8cfd8147
      Tejun Heo 提交于
      This patch implements cgroup v2 thread support.  The goal of the
      thread mode is supporting hierarchical accounting and control at
      thread granularity while staying inside the resource domain model
      which allows coordination across different resource controllers and
      handling of anonymous resource consumptions.
      
      A cgroup is always created as a domain and can be made threaded by
      writing to the "cgroup.type" file.  When a cgroup becomes threaded, it
      becomes a member of a threaded subtree which is anchored at the
      closest ancestor which isn't threaded.
      
      The threads of the processes which are in a threaded subtree can be
      placed anywhere without being restricted by process granularity or
      no-internal-process constraint.  Note that the threads aren't allowed
      to escape to a different threaded subtree.  To be used inside a
      threaded subtree, a controller should explicitly support threaded mode
      and be able to handle internal competition in the way which is
      appropriate for the resource.
      
      The root of a threaded subtree, the nearest ancestor which isn't
      threaded, is called the threaded domain and serves as the resource
      domain for the whole subtree.  This is the last cgroup where domain
      controllers are operational and where all the domain-level resource
      consumptions in the subtree are accounted.  This allows threaded
      controllers to operate at thread granularity when requested while
      staying inside the scope of system-level resource distribution.
      
      As the root cgroup is exempt from the no-internal-process constraint,
      it can serve as both a threaded domain and a parent to normal cgroups,
      so, unlike non-root cgroups, the root cgroup can have both domain and
      threaded children.
      
      Internally, in a threaded subtree, each css_set has its ->dom_cset
      pointing to a matching css_set which belongs to the threaded domain.
      This ensures that thread root level cgroup_subsys_state for all
      threaded controllers are readily accessible for domain-level
      operations.
      
      This patch enables threaded mode for the pids and perf_events
      controllers.  Neither has to worry about domain-level resource
      consumptions and it's enough to simply set the flag.
      
      For more details on the interface and behavior of the thread mode,
      please refer to the section 2-2-2 in Documentation/cgroup-v2.txt added
      by this patch.
      
      v5: - Dropped silly no-op ->dom_cgrp init from cgroup_create().
            Spotted by Waiman.
          - Documentation updated as suggested by Waiman.
          - cgroup.type content slightly reformatted.
          - Mark the debug controller threaded.
      
      v4: - Updated to the general idea of marking specific cgroups
            domain/threaded as suggested by PeterZ.
      
      v3: - Dropped "join" and always make mixed children join the parent's
            threaded subtree.
      
      v2: - After discussions with Waiman, support for mixed thread mode is
            added.  This should address the issue that Peter pointed out
            where any nesting should be avoided for thread subtrees while
            coexisting with other domain cgroups.
          - Enabling / disabling thread mode now piggy backs on the existing
            control mask update mechanism.
          - Bug fixes and cleanup.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Cc: Waiman Long <longman@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      8cfd8147
    • T
      cgroup: reorganize cgroup.procs / task write path · 715c809d
      Tejun Heo 提交于
      Currently, writes "cgroup.procs" and "cgroup.tasks" files are all
      handled by __cgroup_procs_write() on both v1 and v2.  This patch
      reoragnizes the write path so that there are common helper functions
      that different write paths use.
      
      While this somewhat increases LOC, the different paths are no longer
      intertwined and each path has more flexibility to implement different
      behaviors which will be necessary for the planned v2 thread support.
      
      v3: - Restructured so that cgroup_procs_write_permission() takes
            @src_cgrp and @dst_cgrp.
      
      v2: - Rolled in Waiman's task reference count fix.
          - Updated on top of nsdelegate changes.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Cc: Waiman Long <longman@redhat.com>
      715c809d
  9. 08 7月, 2017 1 次提交
    • T
      cgroup: don't call migration methods if there are no tasks to migrate · 61046727
      Tejun Heo 提交于
      Subsystem migration methods shouldn't be called for empty migrations.
      cgroup_migrate_execute() implements this guarantee by bailing early if
      there are no source css_sets.  This used to be correct before
      a79a908f ("cgroup: introduce cgroup namespaces"), but no longer
      since the commit because css_sets can stay pinned without tasks in
      them.
      
      This caused cgroup_migrate_execute() call into cpuset migration
      methods with an empty cgroup_taskset.  cpuset migration methods
      correctly assume that cgroup_taskset_first() never returns NULL;
      however, due to the bug, it can, leading to the following oops.
      
        Unable to handle kernel paging request for data at address 0x00000960
        Faulting instruction address: 0xc0000000001d6868
        Oops: Kernel access of bad area, sig: 11 [#1]
        ...
        CPU: 14 PID: 16947 Comm: kworker/14:0 Tainted: G        W
        4.12.0-rc4-next-20170609 #2
        Workqueue: events cpuset_hotplug_workfn
        task: c00000000ca60580 task.stack: c00000000c728000
        NIP: c0000000001d6868 LR: c0000000001d6858 CTR: c0000000001d6810
        REGS: c00000000c72b720 TRAP: 0300   Tainted: GW (4.12.0-rc4-next-20170609)
        MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE>  CR: 44722422  XER: 20000000
        CFAR: c000000000008710 DAR: 0000000000000960 DSISR: 40000000 SOFTE: 1
        GPR00: c0000000001d6858 c00000000c72b9a0 c000000001536e00 0000000000000000
        GPR04: c00000000c72b9c0 0000000000000000 c00000000c72bad0 c000000766367678
        GPR08: c000000766366d10 c00000000c72b958 c000000001736e00 0000000000000000
        GPR12: c0000000001d6810 c00000000e749300 c000000000123ef8 c000000775af4180
        GPR16: 0000000000000000 0000000000000000 c00000075480e9c0 c00000075480e9e0
        GPR20: c00000075480e8c0 0000000000000001 0000000000000000 c00000000c72ba20
        GPR24: c00000000c72baa0 c00000000c72bac0 c000000001407248 c00000000c72ba20
        GPR28: c00000000141fc80 c00000000c72bac0 c00000000c6bc790 0000000000000000
        NIP [c0000000001d6868] cpuset_can_attach+0x58/0x1b0
        LR [c0000000001d6858] cpuset_can_attach+0x48/0x1b0
        Call Trace:
        [c00000000c72b9a0] [c0000000001d6858] cpuset_can_attach+0x48/0x1b0 (unreliable)
        [c00000000c72ba00] [c0000000001cbe80] cgroup_migrate_execute+0xb0/0x450
        [c00000000c72ba80] [c0000000001d3754] cgroup_transfer_tasks+0x1c4/0x360
        [c00000000c72bba0] [c0000000001d923c] cpuset_hotplug_workfn+0x86c/0xa20
        [c00000000c72bca0] [c00000000011aa44] process_one_work+0x1e4/0x580
        [c00000000c72bd30] [c00000000011ae78] worker_thread+0x98/0x5c0
        [c00000000c72bdc0] [c000000000124058] kthread+0x168/0x1b0
        [c00000000c72be30] [c00000000000b2e8] ret_from_kernel_thread+0x5c/0x74
        Instruction dump:
        f821ffa1 7c7d1b78 60000000 60000000 38810020 7fa3eb78 3f42ffed 4bff4c25
        60000000 3b5a0448 3d420020 eb610020 <e9230960> 7f43d378 e9290000 f92af200
        ---[ end trace dcaaf98fb36d9e64 ]---
      
      This patch fixes the bug by adding an explicit nr_tasks counter to
      cgroup_taskset and skipping calling the migration methods if the
      counter is zero.  While at it, remove the now spurious check on no
      source css_sets.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reported-and-tested-by: NAbdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Roman Gushchin <guro@fb.com>
      Cc: stable@vger.kernel.org # v4.6+
      Fixes: a79a908f ("cgroup: introduce cgroup namespaces")
      Link: http://lkml.kernel.org/r/1497266622.15415.39.camel@abdul.in.ibm.com
      61046727
  10. 15 6月, 2017 1 次提交
  11. 29 4月, 2017 1 次提交
  12. 09 3月, 2017 1 次提交
  13. 16 1月, 2017 2 次提交
    • T
      cgroup: call subsys->*attach() only for subsystems which are actually affected by migration · bfc2cf6f
      Tejun Heo 提交于
      Currently, subsys->*attach() callbacks are called for all subsystems
      which are attached to the hierarchy on which the migration is taking
      place.
      
      With cgroup_migrate_prepare_dst() filtering out identity migrations,
      v1 hierarchies can avoid spurious ->*attach() callback invocations
      where the source and destination csses are identical; however, this
      isn't enough on v2 as only a subset of the attached controllers can be
      affected on controller enable/disable.
      
      While spurious ->*attach() invocations aren't critically broken,
      they're unnecessary overhead and can lead to temporary overcharges on
      certain controllers.  Fix it by tracking which subsystems are affected
      by a migration and invoking ->*attach() callbacks only on those
      subsystems.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NZefan Li <lizefan@huawei.com>
      bfc2cf6f
    • T
      cgroup: track migration context in cgroup_mgctx · e595cd70
      Tejun Heo 提交于
      cgroup migration is performed in four steps - css_set preloading,
      addition of target tasks, actual migration, and clean up.  A list
      named preloaded_csets is used to track the preloading.  This is a bit
      too restricted and the code is already depending on the subtlety that
      all source css_sets appear before destination ones.
      
      Let's create struct cgroup_mgctx which keeps track of everything
      during migration.  Currently, it has separate preload lists for source
      and destination csets and also embeds cgroup_taskset which is used
      during the actual migration.  This moves struct cgroup_taskset
      definition to cgroup-internal.h.
      
      This patch doesn't cause any functional changes.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NZefan Li <lizefan@huawei.com>
      e595cd70
  14. 28 12月, 2016 5 次提交