- 28 11月, 2014 1 次提交
-
-
由 Christoph Hellwig 提交于
More consolidatation for the on-disk format defintions. Note that the XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related to the on disk format, but depends on a CONFIG_ option. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 02 10月, 2014 2 次提交
-
-
由 Eric Sandeen 提交于
I discovered this in userspace, but the same change applies to the kernel. If we xfs_mdrestore an image from a non-crc filesystem, lo and behold the restored image has gained a CRC: # db/xfs_metadump.sh -o /dev/sdc1 - | xfs_mdrestore - test.img # xfs_db -c "sb 0" -c "p crc" /dev/sdc1 crc = 0 (correct) # xfs_db -c "sb 0" -c "p crc" test.img crc = 0xb6f8d6a0 (correct) This is because xfs_sb_from_disk doesn't fill in sb_crc, but xfs_sb_to_disk(XFS_SB_ALL_BITS) does write the in-memory CRC to disk - so we get uninitialized memory on disk. Fix this by always initializing sb_crc to 0 when we read the superblock, and masking out the CRC bit from ALL_BITS when we write it. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
In this case, if bp is NULL, error is set, and we send a NULL bp to xfs_trans_brelse, which will try to dereference it. Test whether we actually have a buffer before we try to free it. Coverity spotted this. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 29 9月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
Sparse warns that we are passing the big-endian valueo f agi_newino to the initial btree lookup function when trying to find a new inode. This is wrong - we need to pass the host order value, not the disk order value. This will adversely affect the next inode allocated, but given that the free inode btree is usually much smaller than the allocated inode btree it is much less likely to be a performance issue if we start the search in the wrong place. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 23 9月, 2014 5 次提交
-
-
由 Eric Sandeen 提交于
xfs_dir3_data_get_ftype() gets the file type off disk, but ASSERTs if it's invalid: ASSERT(type < XFS_DIR3_FT_MAX); We shouldn't ASSERT on bad values read from disk. V3 dirs are CRC-protected, but V2 dirs + ftype are not. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
The collapse range operation currently writes the entire file before starting the collapse to avoid changes in the in-core extent list due to writeback causing the extent count to change. Now that collapse range is fsb based rather than extent index based it can sustain changes in the extent list during the shift sequence without disruption. Modify xfs_collapse_file_space() to writeback and invalidate pages associated with the range of the file to be shifted. xfs_free_file_space() currently has similar behavior, but the space free need only affect the region of the file that is freed and this could change in the future. Also update the comments to reflect the current implementation. We retain the eofblocks trim permanently as a best option for dealing with delalloc extents. We don't shift delalloc extents because this scenario only occurs with post-eof preallocation (since data must be flushed such that the cache can be invalidated and data can be shifted). That means said space must also be initialized before being shifted into the accessible region of the file only to be immediately truncated off as the last part of the collapse. In other words, the eofblocks trim will happen anyways, we just run it first to ensure the file remains in a consistent state throughout the collapse. Finally, detect and fail explicitly in the event of a delalloc extent during the extent shift. The implementation does not support delalloc extents and the caller is expected to prevent this scenario in advance as is done by collapse. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
xfs_bmap_shift_extents() has a variety of conditions and error checks that make the logic difficult to follow and indent heavy. Refactor the loop body of this function into a new xfs_bmse_shift_one() helper. This simplifies the error checks, eliminates index decrement on merge hack by pushing the index increment down into the helper, and makes the code more readable by reducing multiple levels of indentation. This is a code refactor only. The behavior of extent shift and collapse range is not modified. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
The extent shift mechanism in xfs_bmap_shift_extents() is complicated and handles several different, non-deterministic scenarios. These include extent shifts, extent merges and potential btree updates in either of the former scenarios. Refactor the code to be more linear and readable. The loop logic in xfs_bmap_shift_extents() and some initial error checking is adjusted slightly. The associated btree lookup and update/delete operations are condensed into single blocks of code. This reduces the number of btree-specific blocks and facilitates the separation of the merge operation into a new xfs_bmse_merge() and xfs_bmse_can_merge() helpers. This is a code refactor only. The behavior of extent shift and collapse range is not modified. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
The collapse range implementation uses a transaction per extent shift. The progress of the overall operation is tracked via the current extent index of the in-core extent list. This is racy because the ilock must be dropped and reacquired for each transaction according to locking and log reservation rules. Therefore, writeback to prior regions of the file is possible and can change the extent count. This changes the extent to which the current index refers and causes the collapse to fail mid operation. To avoid this problem, the entire file is currently written back before the collapse operation starts. To eliminate the need to flush the entire file, use the file offset (fsb) to track the progress of the overall extent shift operation rather than the extent index. Modify xfs_bmap_shift_extents() to unconditionally convert the start_fsb parameter to an extent index and return the file offset of the extent where the shift left off, if further extents exist. The bulk of ths function can remain based on extent index as ilock is held by the caller. xfs_collapse_file_space() now uses the fsb output as the starting point for the subsequent shift. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 09 9月, 2014 5 次提交
-
-
由 Eric Sandeen 提交于
rbpp is always passed into xfs_rtmodify_summary and xfs_rtget_summary, so there is no need to test for it in xfs_rtmodify_summary_int. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
xfs_rtmodify_summary and xfs_rtget_summary are almost identical; fold them into xfs_rtmodify_summary_int(), with wrappers for each of the original calls. The _int function modifies if a delta is passed, and returns a summary pointer if *sum is passed. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
xfs_dir_canenter and xfs_dir_createname are almost identical. Fold the former into the latter, with a helpful wrapper for the former. If createname is called without an inode number, it now only checks for space, and does not actually add the entry. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Move the resblks test out of the xfs_dir_canenter, and into the caller. This makes a little more sense on the face of it; xfs_dir_canenter immediately returns if resblks !=0; and given some of the comments preceding the calls: * Check for ability to enter directory entry, if no space reserved. even more so. It also facilitates the next patch. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
These were exposed by fsfuzzer runs; without them we fail in various exciting and sometimes convoluted ways when we encounter disk corruption. Without the MAXLEVELS tests we tend to walk off the end of an array in a loop like this: for (i = 0; i < cur->bc_nlevels; i++) { if (cur->bc_bufs[i]) Without the dirblklog test we try to allocate more memory than we could possibly hope for and loop forever: xfs_dabuf_map() nfsb = mp->m_dir_geo->fsbcount; irecs = kmem_zalloc(sizeof(irec) * nfsb, KM_SLEEP... As for the logbsize check, that's the convoluted one. If logbsize is specified at mount time, it's sanitized in xfs_parseargs; in particular it makes sure that it's not > XLOG_MAX_RECORD_BSIZE. If not specified at mount time, it comes from the superblock via sb_logsunit; this is limited to 256k at mkfs time as well; it's copied into m_logbsize in xfs_finish_flags(). However, if for some reason the on-disk value is corrupt and too large, nothing catches it. It's a circuitous path, but that size eventually finds its way to places that make the kernel very unhappy, leading to oopses in xlog_pack_data() because we use the size as an index into iclog->ic_data, but the array is not necessarily that big. Anyway - bounds checking when we read from disk is a good thing! Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 02 9月, 2014 1 次提交
-
-
由 Brian Foster 提交于
The file collapse mechanism uses xfs_bmap_shift_extents() to collapse all subsequent extents down into the specified, previously punched out, region. This function performs some validation, such as whether a sufficient hole exists in the target region of the collapse, then shifts the remaining exents downward. The exit path of the function currently logs the inode unconditionally. While we must log the inode (and abort) if an error occurs and the transaction is dirty, the initial validation paths can generate errors before the transaction has been dirtied. This creates an unnecessary filesystem shutdown scenario, as the caller will cancel a transaction that has been marked dirty. Modify xfs_bmap_shift_extents() to OR the logflags bits as modifications are made to the inode bmap. Only log the inode in the exit path if logflags has been set. This ensures we only have to cancel a dirty transaction if modifications have been made and prevents an unnecessary filesystem shutdown otherwise. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 04 8月, 2014 1 次提交
-
-
由 Eric Sandeen 提交于
The commit 83e782e1 xfs: Remove incore use of XFS_OQUOTA_ENFD and XFS_OQUOTA_CHKD added a new function xfs_sb_quota_from_disk() which swaps on-disk XFS_OQUOTA_* flags for in-core XFS_GQUOTA_* and XFS_PQUOTA_* flags after the superblock is read. However, if log recovery is required, the superblock is read again, and the modified in-core flags are re-read from disk, so we have XFS_OQUOTA_* flags in memory again. This causes the XFS_QM_NEED_QUOTACHECK() test to be true, because the XFS_OQUOTA_CHKD is still set, and not XFS_GQUOTA_CHKD or XFS_PQUOTA_CHKD. Change xfs_sb_from_disk to call xfs_sb_quota_from disk and always convert the disk flags to in-memory flags. Add a lower-level function which can be called with "false" to not convert the flags, so that the sb verifier can verify exactly what was on disk, per Brian Foster's suggestion. Reported-by: NCyril B. <cbay@excellency.fr> Signed-off-by: NEric Sandeen <sandeen@redhat.com>
-
- 30 7月, 2014 1 次提交
-
-
由 Christoph Hellwig 提交于
Trying to support tiny disks only and saving a bit memory might have made sense on an SGI O2 15 years ago, but is pretty pointless today. Remove the rarely tested codepath that uses various smaller in-memory types to reduce our test matrix and make the codebase a little bit smaller and less complicated. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 24 7月, 2014 1 次提交
-
-
由 Jie Liu 提交于
Remove the XFS_IS_OQUOTA_ON macros as it is obsoleted. Signed-off-by: NJie Liu <jeff.liu@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 25 6月, 2014 4 次提交
-
-
由 Dave Chinner 提交于
Convert all the errors the core XFs code to negative error signs like the rest of the kernel and remove all the sign conversion we do in the interface layers. Errors for conversion (and comparison) found via searches like: $ git grep " E" fs/xfs $ git grep "return E" fs/xfs $ git grep " E[A-Z].*;$" fs/xfs Negation points found via searches like: $ git grep "= -[a-z,A-Z]" fs/xfs $ git grep "return -[a-z,A-D,F-Z]" fs/xfs $ git grep " -[a-z].*;" fs/xfs [ with some bits I missed from Brian Foster ] Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Move all the source files that are shared with userspace into libxfs/. This is done as one big chunk simpy to get it done quickly Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Move all the header files that are shared with userspace into libxfs. This is done as one big chunk simpy to get it done quickly. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
To minimise the differences between kernel and userspace code, split the kernel code into the same structure as the userspace code. That is, the gneric core functionality of XFS is moved to a libxfs/ directory and treat it as a layering barrier in the XFS code. This patch introduces the libxfs directory, the build infrastructure and an initial source and header file to build. The libxfs directory will contain the header files that are needed to build libxfs - most of userspace does not care about the location of these header files as they are accessed indirectly. Hence keeping them inside libxfs makes it easy to track the changes and script the sync process as the directory structure will be identical. To allow this changeover to occur in the kernel code, there are some temporary infrastructure in the makefiles to grab the header filesystem from both locations. Once all the files are moved, modifications will be made in the source code that will make the need for these include directives go away. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-