1. 09 10月, 2012 2 次提交
    • M
      mm: replace vma prio_tree with an interval tree · 6b2dbba8
      Michel Lespinasse 提交于
      Implement an interval tree as a replacement for the VMA prio_tree.  The
      algorithms are similar to lib/interval_tree.c; however that code can't be
      directly reused as the interval endpoints are not explicitly stored in the
      VMA.  So instead, the common algorithm is moved into a template and the
      details (node type, how to get interval endpoints from the node, etc) are
      filled in using the C preprocessor.
      
      Once the interval tree functions are available, using them as a
      replacement to the VMA prio tree is a relatively simple, mechanical job.
      Signed-off-by: NMichel Lespinasse <walken@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6b2dbba8
    • M
      rbtree: add prio tree and interval tree tests · fff3fd8a
      Michel Lespinasse 提交于
      Patch 1 implements support for interval trees, on top of the augmented
      rbtree API. It also adds synthetic tests to compare the performance of
      interval trees vs prio trees. Short answers is that interval trees are
      slightly faster (~25%) on insert/erase, and much faster (~2.4 - 3x)
      on search. It is debatable how realistic the synthetic test is, and I have
      not made such measurements yet, but my impression is that interval trees
      would still come out faster.
      
      Patch 2 uses a preprocessor template to make the interval tree generic,
      and uses it as a replacement for the vma prio_tree.
      
      Patch 3 takes the other prio_tree user, kmemleak, and converts it to use
      a basic rbtree. We don't actually need the augmented rbtree support here
      because the intervals are always non-overlapping.
      
      Patch 4 removes the now-unused prio tree library.
      
      Patch 5 proposes an additional optimization to rb_erase_augmented, now
      providing it as an inline function so that the augmented callbacks can be
      inlined in. This provides an additional 5-10% performance improvement
      for the interval tree insert/erase benchmark. There is a maintainance cost
      as it exposes augmented rbtree users to some of the rbtree library internals;
      however I think this cost shouldn't be too high as I expect the augmented
      rbtree will always have much less users than the base rbtree.
      
      I should probably add a quick summary of why I think it makes sense to
      replace prio trees with augmented rbtree based interval trees now.  One of
      the drivers is that we need augmented rbtrees for Rik's vma gap finding
      code, and once you have them, it just makes sense to use them for interval
      trees as well, as this is the simpler and more well known algorithm.  prio
      trees, in comparison, seem *too* clever: they impose an additional 'heap'
      constraint on the tree, which they use to guarantee a faster worst-case
      complexity of O(k+log N) for stabbing queries in a well-balanced prio
      tree, vs O(k*log N) for interval trees (where k=number of matches,
      N=number of intervals).  Now this sounds great, but in practice prio trees
      don't realize this theorical benefit.  First, the additional constraint
      makes them harder to update, so that the kernel implementation has to
      simplify things by balancing them like a radix tree, which is not always
      ideal.  Second, the fact that there are both index and heap properties
      makes both tree manipulation and search more complex, which results in a
      higher multiplicative time constant.  As it turns out, the simple interval
      tree algorithm ends up running faster than the more clever prio tree.
      
      This patch:
      
      Add two test modules:
      
      - prio_tree_test measures the performance of lib/prio_tree.c, both for
        insertion/removal and for stabbing searches
      
      - interval_tree_test measures the performance of a library of equivalent
        functionality, built using the augmented rbtree support.
      
      In order to support the second test module, lib/interval_tree.c is
      introduced. It is kept separate from the interval_tree_test main file
      for two reasons: first we don't want to provide an unfair advantage
      over prio_tree_test by having everything in a single compilation unit,
      and second there is the possibility that the interval tree functionality
      could get some non-test users in kernel over time.
      Signed-off-by: NMichel Lespinasse <walken@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fff3fd8a