- 21 7月, 2018 2 次提交
-
-
由 Eric W. Biederman 提交于
Everywhere except in the pid array we distinguish between a tasks pid and a tasks tgid (thread group id). Even in the enumeration we want that distinction sometimes so we have added __PIDTYPE_TGID. With leader_pid we almost have an implementation of PIDTYPE_TGID in struct signal_struct. Add PIDTYPE_TGID as a first class member of the pid_type enumeration and into the pids array. Then remove the __PIDTYPE_TGID special case and the leader_pid in signal_struct. The net size increase is just an extra pointer added to struct pid and an extra pair of pointers of an hlist_node added to task_struct. The effect on code maintenance is the removal of a number of special cases today and the potential to remove many more special cases as PIDTYPE_TGID gets used to it's fullest. The long term potential is allowing zombie thread group leaders to exit, which will remove a lot more special cases in the code. Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
由 Eric W. Biederman 提交于
To access these fields the code always has to go to group leader so going to signal struct is no loss and is actually a fundamental simplification. This saves a little bit of memory by only allocating the pid pointer array once instead of once for every thread, and even better this removes a few potential races caused by the fact that group_leader can be changed by de_thread, while signal_struct can not. Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 15 6月, 2018 1 次提交
-
-
由 Tetsuo Handa 提交于
As a theoretical problem, dup_mmap() of an mm_struct with 60000+ vmas can loop while potentially allocating memory, with mm->mmap_sem held for write by current thread. This is bad if current thread was selected as an OOM victim, for current thread will continue allocations using memory reserves while OOM reaper is unable to reclaim memory. As an actually observable problem, it is not difficult to make OOM reaper unable to reclaim memory if the OOM victim is blocked at i_mmap_lock_write() in this loop. Unfortunately, since nobody can explain whether it is safe to use killable wait there, let's check for SIGKILL before trying to allocate memory. Even without an OOM event, there is no point with continuing the loop from the beginning if current thread is killed. I tested with debug printk(). This patch should be safe because we already fail if security_vm_enough_memory_mm() or kmem_cache_alloc(GFP_KERNEL) fails and exit_mmap() handles it. ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting exit_mmap() due to NULL mmap ***** [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/201804071938.CDE04681.SOFVQJFtMHOOLF@I-love.SAKURA.ne.jpSigned-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 6月, 2018 1 次提交
-
-
由 Linus Torvalds 提交于
The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 6月, 2018 1 次提交
-
-
由 Yang Shi 提交于
mmap_sem is on the hot path of kernel, and it very contended, but it is abused too. It is used to protect arg_start|end and evn_start|end when reading /proc/$PID/cmdline and /proc/$PID/environ, but it doesn't make sense since those proc files just expect to read 4 values atomically and not related to VM, they could be set to arbitrary values by C/R. And, the mmap_sem contention may cause unexpected issue like below: INFO: task ps:14018 blocked for more than 120 seconds. Tainted: G E 4.9.79-009.ali3000.alios7.x86_64 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. ps D 0 14018 1 0x00000004 Call Trace: schedule+0x36/0x80 rwsem_down_read_failed+0xf0/0x150 call_rwsem_down_read_failed+0x18/0x30 down_read+0x20/0x40 proc_pid_cmdline_read+0xd9/0x4e0 __vfs_read+0x37/0x150 vfs_read+0x96/0x130 SyS_read+0x55/0xc0 entry_SYSCALL_64_fastpath+0x1a/0xc5 Both Alexey Dobriyan and Michal Hocko suggested to use dedicated lock for them to mitigate the abuse of mmap_sem. So, introduce a new spinlock in mm_struct to protect the concurrent access to arg_start|end, env_start|end and others, as well as replace write map_sem to read to protect the race condition between prctl and sys_brk which might break check_data_rlimit(), and makes prctl more friendly to other VM operations. This patch just eliminates the abuse of mmap_sem, but it can't resolve the above hung task warning completely since the later access_remote_vm() call needs acquire mmap_sem. The mmap_sem scalability issue will be solved in the future. [yang.shi@linux.alibaba.com: add comment about mmap_sem and arg_lock] Link: http://lkml.kernel.org/r/1524077799-80690-1-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1523730291-109696-1-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NCyrill Gorcunov <gorcunov@openvz.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 6月, 2018 1 次提交
-
-
由 Mathieu Desnoyers 提交于
Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdfSigned-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
-
- 15 5月, 2018 1 次提交
-
-
由 Richard Guy Briggs 提交于
Recognizing that the audit context is an internal audit value, use an access function to set the audit context pointer for the task rather than reaching directly into the task struct to set it. Signed-off-by: NRichard Guy Briggs <rgb@redhat.com> [PM: merge fuzz in audit.h] Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
- 21 4月, 2018 1 次提交
-
-
由 Kees Cook 提交于
One of the classes of kernel stack content leaks[1] is exposing the contents of prior heap or stack contents when a new process stack is allocated. Normally, those stacks are not zeroed, and the old contents remain in place. In the face of stack content exposure flaws, those contents can leak to userspace. Fixing this will make the kernel no longer vulnerable to these flaws, as the stack will be wiped each time a stack is assigned to a new process. There's not a meaningful change in runtime performance; it almost looks like it provides a benefit. Performing back-to-back kernel builds before: Run times: 157.86 157.09 158.90 160.94 160.80 Mean: 159.12 Std Dev: 1.54 and after: Run times: 159.31 157.34 156.71 158.15 160.81 Mean: 158.46 Std Dev: 1.46 Instead of making this a build or runtime config, Andy Lutomirski recommended this just be enabled by default. [1] A noisy search for many kinds of stack content leaks can be seen here: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+stack+leak I did some more with perf and cycle counts on running 100,000 execs of /bin/true. before: Cycles: 218858861551 218853036130 214727610969 227656844122 224980542841 Mean: 221015379122.60 Std Dev: 4662486552.47 after: Cycles: 213868945060 213119275204 211820169456 224426673259 225489986348 Mean: 217745009865.40 Std Dev: 5935559279.99 It continues to look like it's faster, though the deviation is rather wide, but I'm not sure what I could do that would be less noisy. I'm open to ideas! Link: http://lkml.kernel.org/r/20180221021659.GA37073@beastSigned-off-by: NKees Cook <keescook@chromium.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 4月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
KASAN splats indicate that in some cases we free a live mm, then continue to access it, with potentially disastrous results. This is likely due to a mismatched mmdrop() somewhere in the kernel, but so far the culprit remains elusive. Let's have __mmdrop() verify that the mm isn't live for the current task, similar to the existing check for init_mm. This way, we can catch this class of issue earlier, and without requiring KASAN. Currently, idle_task_exit() leaves active_mm stale after it switches to init_mm. This isn't harmful, but will trigger the new assertions, so we must adjust idle_task_exit() to update active_mm. Link: http://lkml.kernel.org/r/20180312140103.19235-1-mark.rutland@arm.comSigned-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2018 2 次提交
-
-
由 Dominik Brodowski 提交于
Using this helper allows us to avoid the in-kernel calls to the sys_unshare() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_unshare(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
sys_futex() is a wrapper to do_futex() which does not modify any values here: - uaddr, val and val3 are kept the same - op is masked with FUTEX_CMD_MASK, but is always set to FUTEX_WAKE. Therefore, val2 is always 0. - as utime is set to NULL, *timeout is NULL This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <dvhart@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
- 22 2月, 2018 1 次提交
-
-
由 Andrew Morton 提交于
As Peter points out, Doing a CALL+RET for just the decrement is a bit silly. Fixes: d70f2a14 ("include/linux/sched/mm.h: uninline mmdrop_async(), etc") Acked-by: NPeter Zijlstra (Intel) <peterz@infraded.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 2月, 2018 2 次提交
-
-
由 Marcos Paulo de Souza 提交于
All other places that deals with namespaces have an explanation of why the restriction is there. The description added in this commit was based on commit e66eded8 ("userns: Don't allow CLONE_NEWUSER | CLONE_FS"). Link: http://lkml.kernel.org/r/20171112151637.13258-1-marcos.souza.org@gmail.comSigned-off-by: NMarcos Paulo de Souza <marcos.souza.org@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marcos Paulo de Souza 提交于
Thus reducing one indentation level while maintaining the same rationale. Link: http://lkml.kernel.org/r/20171117002929.5155-1-marcos.souza.org@gmail.comSigned-off-by: NMarcos Paulo de Souza <marcos.souza.org@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 2月, 2018 1 次提交
-
-
由 Andrew Morton 提交于
mmdrop_async() is only used in fork.c. Move that and its support functions into fork.c, uninline it all. Quite a lot of code gets moved around to avoid forward declarations. Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 1月, 2018 3 次提交
-
-
由 Kees Cook 提交于
While the blocked and saved_sigmask fields of task_struct are copied to userspace (via sigmask_to_save() and setup_rt_frame()), it is always copied with a static length (i.e. sizeof(sigset_t)). The only portion of task_struct that is potentially dynamically sized and may be copied to userspace is in the architecture-specific thread_struct at the end of task_struct. cache object allocation: kernel/fork.c: alloc_task_struct_node(...): return kmem_cache_alloc_node(task_struct_cachep, ...); dup_task_struct(...): ... tsk = alloc_task_struct_node(node); copy_process(...): ... dup_task_struct(...) _do_fork(...): ... copy_process(...) example usage trace: arch/x86/kernel/fpu/signal.c: __fpu__restore_sig(...): ... struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; ... __copy_from_user(&fpu->state.xsave, ..., state_size); fpu__restore_sig(...): ... return __fpu__restore_sig(...); arch/x86/kernel/signal.c: restore_sigcontext(...): ... fpu__restore_sig(...) This introduces arch_thread_struct_whitelist() to let an architecture declare specifically where the whitelist should be within thread_struct. If undefined, the entire thread_struct field is left whitelisted. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Laura Abbott <labbott@redhat.com> Cc: "Mickaël Salaün" <mic@digikod.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: NKees Cook <keescook@chromium.org> Acked-by: NRik van Riel <riel@redhat.com>
-
由 David Windsor 提交于
In support of usercopy hardening, this patch defines a region in the thread_stack slab caches in which userspace copy operations are allowed. Since the entire thread_stack needs to be available to userspace, the entire slab contents are whitelisted. Note that the slab-based thread stack is only present on systems with THREAD_SIZE < PAGE_SIZE and !CONFIG_VMAP_STACK. cache object allocation: kernel/fork.c: alloc_thread_stack_node(...): return kmem_cache_alloc_node(thread_stack_cache, ...) dup_task_struct(...): ... stack = alloc_thread_stack_node(...) ... tsk->stack = stack; copy_process(...): ... dup_task_struct(...) _do_fork(...): ... copy_process(...) This region is known as the slab cache's usercopy region. Slab caches can now check that each dynamically sized copy operation involving cache-managed memory falls entirely within the slab's usercopy region. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Signed-off-by: NDavid Windsor <dave@nullcore.net> [kees: adjust commit log, split patch, provide usage trace] Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: NKees Cook <keescook@chromium.org> Acked-by: NRik van Riel <riel@redhat.com>
-
由 David Windsor 提交于
In support of usercopy hardening, this patch defines a region in the mm_struct slab caches in which userspace copy operations are allowed. Only the auxv field is copied to userspace. cache object allocation: kernel/fork.c: #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) dup_mm(): ... mm = allocate_mm(); copy_mm(...): ... dup_mm(); copy_process(...): ... copy_mm(...) _do_fork(...): ... copy_process(...) example usage trace: fs/binfmt_elf.c: create_elf_tables(...): ... elf_info = (elf_addr_t *)current->mm->saved_auxv; ... copy_to_user(..., elf_info, ei_index * sizeof(elf_addr_t)) load_elf_binary(...): ... create_elf_tables(...); This region is known as the slab cache's usercopy region. Slab caches can now check that each dynamically sized copy operation involving cache-managed memory falls entirely within the slab's usercopy region. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Signed-off-by: NDavid Windsor <dave@nullcore.net> [kees: adjust commit log, split patch, provide usage trace] Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: NKees Cook <keescook@chromium.org> Acked-by: NRik van Riel <riel@redhat.com>
-
- 23 12月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
In order to sanitize the LDT initialization on x86 arch_dup_mmap() must be allowed to fail. Fix up all instances. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: dan.j.williams@intel.com Cc: hughd@google.com Cc: keescook@google.com Cc: kirill.shutemov@linux.intel.com Cc: linux-mm@kvack.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 11月, 2017 1 次提交
-
-
由 Gargi Sharma 提交于
pidhash is no longer required as all the information can be looked up from idr tree. nr_hashed represented the number of pids that had been hashed. Since, nr_hashed and PIDNS_HASH_ADDING are no longer relevant, it has been renamed to pid_allocated and PIDNS_ADDING respectively. [gs051095@gmail.com: v6] Link: http://lkml.kernel.org/r/1507760379-21662-3-git-send-email-gs051095@gmail.com Link: http://lkml.kernel.org/r/1507583624-22146-3-git-send-email-gs051095@gmail.comSigned-off-by: NGargi Sharma <gs051095@gmail.com> Reviewed-by: NRik van Riel <riel@redhat.com> Tested-by: Tony Luck <tony.luck@intel.com> [ia64] Cc: Julia Lawall <julia.lawall@lip6.fr> Cc: Ingo Molnar <mingo@kernel.org> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 11月, 2017 4 次提交
-
-
Convert all allocations that used a NOTRACK flag to stop using it. Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.comSigned-off-by: NSasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
Currently, we account page tables separately for each page table level, but that's redundant -- we only make use of total memory allocated to page tables for oom_badness calculation. We also provide the information to userspace, but it has dubious value there too. This patch switches page table accounting to single counter. mm->pgtables_bytes is now used to account all page table levels. We use bytes, because page table size for different levels of page table tree may be different. The change has user-visible effect: we don't have VmPMD and VmPUD reported in /proc/[pid]/status. Not sure if anybody uses them. (As alternative, we can always report 0 kB for them.) OOM-killer report is also slightly changed: we now report pgtables_bytes instead of nr_ptes, nr_pmd, nr_puds. Apart from reducing number of counters per-mm, the benefit is that we now calculate oom_badness() more correctly for machines which have different size of page tables depending on level or where page tables are less than a page in size. The only downside can be debuggability because we do not know which page table level could leak. But I do not remember many bugs that would be caught by separate counters so I wouldn't lose sleep over this. [akpm@linux-foundation.org: fix mm/huge_memory.c] Link: http://lkml.kernel.org/r/20171006100651.44742-2-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> [kirill.shutemov@linux.intel.com: fix build] Link: http://lkml.kernel.org/r/20171016150113.ikfxy3e7zzfvsr4w@black.fi.intel.comSigned-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
Let's add wrappers for ->nr_ptes with the same interface as for nr_pmd and nr_pud. The patch also makes nr_ptes accounting dependent onto CONFIG_MMU. Page table accounting doesn't make sense if you don't have page tables. It's preparation for consolidation of page-table counters in mm_struct. Link: http://lkml.kernel.org/r/20171006100651.44742-1-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
On a machine with 5-level paging support a process can allocate significant amount of memory and stay unnoticed by oom-killer and memory cgroup. The trick is to allocate a lot of PUD page tables. We don't account PUD page tables, only PMD and PTE. We already addressed the same issue for PMD page tables, see commit dc6c9a35 ("mm: account pmd page tables to the process"). Introduction of 5-level paging brings the same issue for PUD page tables. The patch expands accounting to PUD level. [kirill.shutemov@linux.intel.com: s/pmd_t/pud_t/] Link: http://lkml.kernel.org/r/20171004074305.x35eh5u7ybbt5kar@black.fi.intel.com [heiko.carstens@de.ibm.com: s390/mm: fix pud table accounting] Link: http://lkml.kernel.org/r/20171103090551.18231-1-heiko.carstens@de.ibm.com Link: http://lkml.kernel.org/r/20171002080427.3320-1-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 10月, 2017 1 次提交
-
-
由 Konstantin Khlebnikov 提交于
Kmemleak considers any pointers on task stacks as references. This patch clears newly allocated and reused vmap stacks. Link: http://lkml.kernel.org/r/150728990124.744199.8403409836394318684.stgit@buzzSigned-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 10月, 2017 1 次提交
-
-
由 Sherry Yang 提交于
Drop the global lru lock in isolate callback before calling zap_page_range which calls cond_resched, and re-acquire the global lru lock before returning. Also change return code to LRU_REMOVED_RETRY. Use mmput_async when fail to acquire mmap sem in an atomic context. Fix "BUG: sleeping function called from invalid context" errors when CONFIG_DEBUG_ATOMIC_SLEEP is enabled. Also restore mmput_async, which was initially introduced in commit ec8d7c14 ("mm, oom_reaper: do not mmput synchronously from the oom reaper context"), and was removed in commit 21292580 ("mm: oom: let oom_reap_task and exit_mmap run concurrently"). Link: http://lkml.kernel.org/r/20170914182231.90908-1-sherryy@android.com Fixes: f2517eb7 ("android: binder: Add global lru shrinker to binder") Signed-off-by: NSherry Yang <sherryy@android.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reported-by: NKyle Yan <kyan@codeaurora.org> Acked-by: NArve Hjønnevåg <arve@android.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Martijn Coenen <maco@google.com> Cc: Todd Kjos <tkjos@google.com> Cc: Riley Andrews <riandrews@android.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hdanton@sina.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hoeun Ryu <hoeun.ryu@gmail.com> Cc: Christopher Lameter <cl@linux.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 9月, 2017 2 次提交
-
-
由 Davidlohr Bueso 提交于
... with the generic rbtree flavor instead. No changes in semantics whatsoever. Link: http://lkml.kernel.org/r/20170719014603.19029-10-dave@stgolabs.netSigned-off-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
HMM provides 3 separate types of functionality: - Mirroring: synchronize CPU page table and device page table - Device memory: allocating struct page for device memory - Migration: migrating regular memory to device memory This patch introduces some common helpers and definitions to all of those 3 functionality. Link: http://lkml.kernel.org/r/20170817000548.32038-3-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NEvgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: NJohn Hubbard <jhubbard@nvidia.com> Signed-off-by: NMark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NSherry Cheung <SCheung@nvidia.com> Signed-off-by: NSubhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 9月, 2017 2 次提交
-
-
由 Rik van Riel 提交于
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty in the child process after fork. This differs from MADV_DONTFORK in one important way. If a child process accesses memory that was MADV_WIPEONFORK, it will get zeroes. The address ranges are still valid, they are just empty. If a child process accesses memory that was MADV_DONTFORK, it will get a segmentation fault, since those address ranges are no longer valid in the child after fork. Since MADV_DONTFORK also seems to be used to allow very large programs to fork in systems with strict memory overcommit restrictions, changing the semantics of MADV_DONTFORK might break existing programs. MADV_WIPEONFORK only works on private, anonymous VMAs. The use case is libraries that store or cache information, and want to know that they need to regenerate it in the child process after fork. Examples of this would be: - systemd/pulseaudio API checks (fail after fork) (replacing a getpid check, which is too slow without a PID cache) - PKCS#11 API reinitialization check (mandated by specification) - glibc's upcoming PRNG (reseed after fork) - OpenSSL PRNG (reseed after fork) The security benefits of a forking server having a re-inialized PRNG in every child process are pretty obvious. However, due to libraries having all kinds of internal state, and programs getting compiled with many different versions of each library, it is unreasonable to expect calling programs to re-initialize everything manually after fork. A further complication is the proliferation of clone flags, programs bypassing glibc's functions to call clone directly, and programs calling unshare, causing the glibc pthread_atfork hook to not get called. It would be better to have the kernel take care of this automatically. The patch also adds MADV_KEEPONFORK, to undo the effects of a prior MADV_WIPEONFORK. This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO: https://man.openbsd.org/minherit.2 [akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines] Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.comSigned-off-by: NRik van Riel <riel@redhat.com> Reported-by: NFlorian Weimer <fweimer@redhat.com> Reported-by: NColm MacCártaigh <colm@allcosts.net> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: <linux-api@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrea Arcangeli 提交于
This is purely required because exit_aio() may block and exit_mmap() may never start, if the oom_reap_task cannot start running on a mm with mm_users == 0. At the same time if the OOM reaper doesn't wait at all for the memory of the current OOM candidate to be freed by exit_mmap->unmap_vmas, it would generate a spurious OOM kill. If it wasn't because of the exit_aio or similar blocking functions in the last mmput, it would be enough to change the oom_reap_task() in the case it finds mm_users == 0, to wait for a timeout or to wait for __mmput to set MMF_OOM_SKIP itself, but it's not just exit_mmap the problem here so the concurrency of exit_mmap and oom_reap_task is apparently warranted. It's a non standard runtime, exit_mmap() runs without mmap_sem, and oom_reap_task runs with the mmap_sem for reading as usual (kind of MADV_DONTNEED). The race between the two is solved with a combination of tsk_is_oom_victim() (serialized by task_lock) and MMF_OOM_SKIP (serialized by a dummy down_write/up_write cycle on the same lines of the ksm_exit method). If the oom_reap_task() may be running concurrently during exit_mmap, exit_mmap will wait it to finish in down_write (before taking down mm structures that would make the oom_reap_task fail with use after free). If exit_mmap comes first, oom_reap_task() will skip the mm if MMF_OOM_SKIP is already set and in turn all memory is already freed and furthermore the mm data structures may already have been taken down by free_pgtables. [aarcange@redhat.com: incremental one liner] Link: http://lkml.kernel.org/r/20170726164319.GC29716@redhat.com [rientjes@google.com: remove unused mmput_async] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708141733130.50317@chino.kir.corp.google.com [aarcange@redhat.com: microoptimization] Link: http://lkml.kernel.org/r/20170817171240.GB5066@redhat.com Link: http://lkml.kernel.org/r/20170726162912.GA29716@redhat.com Fixes: 26db62f1 ("oom: keep mm of the killed task available") Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Reported-by: NDavid Rientjes <rientjes@google.com> Tested-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NMichal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 9月, 2017 1 次提交
-
-
由 Eric Biggers 提交于
Commit 7c051267 ("mm, fork: make dup_mmap wait for mmap_sem for write killable") made it possible to kill a forking task while it is waiting to acquire its ->mmap_sem for write, in dup_mmap(). However, it was overlooked that this introduced an new error path before the new mm_struct's ->uprobes_state.xol_area has been set to NULL after being copied from the old mm_struct by the memcpy in dup_mm(). For a task that has previously hit a uprobe tracepoint, this resulted in the 'struct xol_area' being freed multiple times if the task was killed at just the right time while forking. Fix it by setting ->uprobes_state.xol_area to NULL in mm_init() rather than in uprobe_dup_mmap(). With CONFIG_UPROBE_EVENTS=y, the bug can be reproduced by the same C program given by commit 2b7e8665 ("fork: fix incorrect fput of ->exe_file causing use-after-free"), provided that a uprobe tracepoint has been set on the fork_thread() function. For example: $ gcc reproducer.c -o reproducer -lpthread $ nm reproducer | grep fork_thread 0000000000400719 t fork_thread $ echo "p $PWD/reproducer:0x719" > /sys/kernel/debug/tracing/uprobe_events $ echo 1 > /sys/kernel/debug/tracing/events/uprobes/enable $ ./reproducer Here is the use-after-free reported by KASAN: BUG: KASAN: use-after-free in uprobe_clear_state+0x1c4/0x200 Read of size 8 at addr ffff8800320a8b88 by task reproducer/198 CPU: 1 PID: 198 Comm: reproducer Not tainted 4.13.0-rc7-00015-g36fde05f #255 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 Call Trace: dump_stack+0xdb/0x185 print_address_description+0x7e/0x290 kasan_report+0x23b/0x350 __asan_report_load8_noabort+0x19/0x20 uprobe_clear_state+0x1c4/0x200 mmput+0xd6/0x360 do_exit+0x740/0x1670 do_group_exit+0x13f/0x380 get_signal+0x597/0x17d0 do_signal+0x99/0x1df0 exit_to_usermode_loop+0x166/0x1e0 syscall_return_slowpath+0x258/0x2c0 entry_SYSCALL_64_fastpath+0xbc/0xbe ... Allocated by task 199: save_stack_trace+0x1b/0x20 kasan_kmalloc+0xfc/0x180 kmem_cache_alloc_trace+0xf3/0x330 __create_xol_area+0x10f/0x780 uprobe_notify_resume+0x1674/0x2210 exit_to_usermode_loop+0x150/0x1e0 prepare_exit_to_usermode+0x14b/0x180 retint_user+0x8/0x20 Freed by task 199: save_stack_trace+0x1b/0x20 kasan_slab_free+0xa8/0x1a0 kfree+0xba/0x210 uprobe_clear_state+0x151/0x200 mmput+0xd6/0x360 copy_process.part.8+0x605f/0x65d0 _do_fork+0x1a5/0xbd0 SyS_clone+0x19/0x20 do_syscall_64+0x22f/0x660 return_from_SYSCALL_64+0x0/0x7a Note: without KASAN, you may instead see a "Bad page state" message, or simply a general protection fault. Link: http://lkml.kernel.org/r/20170830033303.17927-1-ebiggers3@gmail.com Fixes: 7c051267 ("mm, fork: make dup_mmap wait for mmap_sem for write killable") Signed-off-by: NEric Biggers <ebiggers@google.com> Reported-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 8月, 2017 1 次提交
-
-
由 Eric Biggers 提交于
Commit 7c051267 ("mm, fork: make dup_mmap wait for mmap_sem for write killable") made it possible to kill a forking task while it is waiting to acquire its ->mmap_sem for write, in dup_mmap(). However, it was overlooked that this introduced an new error path before a reference is taken on the mm_struct's ->exe_file. Since the ->exe_file of the new mm_struct was already set to the old ->exe_file by the memcpy() in dup_mm(), it was possible for the mmput() in the error path of dup_mm() to drop a reference to ->exe_file which was never taken. This caused the struct file to later be freed prematurely. Fix it by updating mm_init() to NULL out the ->exe_file, in the same place it clears other things like the list of mmaps. This bug was found by syzkaller. It can be reproduced using the following C program: #define _GNU_SOURCE #include <pthread.h> #include <stdlib.h> #include <sys/mman.h> #include <sys/syscall.h> #include <sys/wait.h> #include <unistd.h> static void *mmap_thread(void *_arg) { for (;;) { mmap(NULL, 0x1000000, PROT_READ, MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); } } static void *fork_thread(void *_arg) { usleep(rand() % 10000); fork(); } int main(void) { fork(); fork(); fork(); for (;;) { if (fork() == 0) { pthread_t t; pthread_create(&t, NULL, mmap_thread, NULL); pthread_create(&t, NULL, fork_thread, NULL); usleep(rand() % 10000); syscall(__NR_exit_group, 0); } wait(NULL); } } No special kernel config options are needed. It usually causes a NULL pointer dereference in __remove_shared_vm_struct() during exit, or in dup_mmap() (which is usually inlined into copy_process()) during fork. Both are due to a vm_area_struct's ->vm_file being used after it's already been freed. Google Bug Id: 64772007 Link: http://lkml.kernel.org/r/20170823211408.31198-1-ebiggers3@gmail.com Fixes: 7c051267 ("mm, fork: make dup_mmap wait for mmap_sem for write killable") Signed-off-by: NEric Biggers <ebiggers@google.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [v4.7+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 8月, 2017 1 次提交
-
-
由 Mark Rutland 提交于
In some cases, an architecture might wish its stacks to be aligned to a boundary larger than THREAD_SIZE. For example, using an alignment of double THREAD_SIZE can allow for stack overflows smaller than THREAD_SIZE to be detected by checking a single bit of the stack pointer. This patch allows architectures to override the alignment of VMAP'd stacks, by defining THREAD_ALIGN. Where not defined, this defaults to THREAD_SIZE, as is the case today. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NWill Deacon <will.deacon@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: linux-kernel@vger.kernel.org
-
- 11 8月, 2017 1 次提交
-
-
由 Nadav Amit 提交于
Patch series "fixes of TLB batching races", v6. It turns out that Linux TLB batching mechanism suffers from various races. Races that are caused due to batching during reclamation were recently handled by Mel and this patch-set deals with others. The more fundamental issue is that concurrent updates of the page-tables allow for TLB flushes to be batched on one core, while another core changes the page-tables. This other core may assume a PTE change does not require a flush based on the updated PTE value, while it is unaware that TLB flushes are still pending. This behavior affects KSM (which may result in memory corruption) and MADV_FREE and MADV_DONTNEED (which may result in incorrect behavior). A proof-of-concept can easily produce the wrong behavior of MADV_DONTNEED. Memory corruption in KSM is harder to produce in practice, but was observed by hacking the kernel and adding a delay before flushing and replacing the KSM page. Finally, there is also one memory barrier missing, which may affect architectures with weak memory model. This patch (of 7): Setting and clearing mm->tlb_flush_pending can be performed by multiple threads, since mmap_sem may only be acquired for read in task_numa_work(). If this happens, tlb_flush_pending might be cleared while one of the threads still changes PTEs and batches TLB flushes. This can lead to the same race between migration and change_protection_range() that led to the introduction of tlb_flush_pending. The result of this race was data corruption, which means that this patch also addresses a theoretically possible data corruption. An actual data corruption was not observed, yet the race was was confirmed by adding assertion to check tlb_flush_pending is not set by two threads, adding artificial latency in change_protection_range() and using sysctl to reduce kernel.numa_balancing_scan_delay_ms. Link: http://lkml.kernel.org/r/20170802000818.4760-2-namit@vmware.com Fixes: 20841405 ("mm: fix TLB flush race between migration, and change_protection_range") Signed-off-by: NNadav Amit <namit@vmware.com> Acked-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 8月, 2017 1 次提交
-
-
由 Byungchul Park 提交于
Lockdep is a runtime locking correctness validator that detects and reports a deadlock or its possibility by checking dependencies between locks. It's useful since it does not report just an actual deadlock but also the possibility of a deadlock that has not actually happened yet. That enables problems to be fixed before they affect real systems. However, this facility is only applicable to typical locks, such as spinlocks and mutexes, which are normally released within the context in which they were acquired. However, synchronization primitives like page locks or completions, which are allowed to be released in any context, also create dependencies and can cause a deadlock. So lockdep should track these locks to do a better job. The 'crossrelease' implementation makes these primitives also be tracked. Signed-off-by: NByungchul Park <byungchul.park@lge.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: boqun.feng@gmail.com Cc: kernel-team@lge.com Cc: kirill@shutemov.name Cc: npiggin@gmail.com Cc: walken@google.com Cc: willy@infradead.org Link: http://lkml.kernel.org/r/1502089981-21272-6-git-send-email-byungchul.park@lge.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 7月, 2017 1 次提交
-
-
由 Tetsuo Handa 提交于
Since commit a79be238 ("selinux: Use task_alloc hook rather than task_create hook") changed to use task_alloc hook, task_create hook is no longer used. Signed-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: NJames Morris <james.l.morris@oracle.com>
-
- 13 7月, 2017 3 次提交
-
-
由 Rik van Riel 提交于
Use the ascii-armor canary to prevent unterminated C string overflows from being able to successfully overwrite the canary, even if they somehow obtain the canary value. Inspired by execshield ascii-armor and Daniel Micay's linux-hardened tree. Link: http://lkml.kernel.org/r/20170524155751.424-3-riel@redhat.comSigned-off-by: NRik van Riel <riel@redhat.com> Acked-by: NKees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dmitry Vyukov 提交于
Add /proc/self/task/<current-tid>/fail-nth file that allows failing 0-th, 1-st, 2-nd and so on calls systematically. Excerpt from the added documentation: "Write to this file of integer N makes N-th call in the current task fail (N is 0-based). Read from this file returns a single char 'Y' or 'N' that says if the fault setup with a previous write to this file was injected or not, and disables the fault if it wasn't yet injected. Note that this file enables all types of faults (slab, futex, etc). This setting takes precedence over all other generic settings like probability, interval, times, etc. But per-capability settings (e.g. fail_futex/ignore-private) take precedence over it. This feature is intended for systematic testing of faults in a single system call. See an example below" Why add a new setting: 1. Existing settings are global rather than per-task. So parallel testing is not possible. 2. attr->interval is close but it depends on attr->count which is non reset to 0, so interval does not work as expected. 3. Trying to model this with existing settings requires manipulations of all of probability, interval, times, space, task-filter and unexposed count and per-task make-it-fail files. 4. Existing settings are per-failure-type, and the set of failure types is potentially expanding. 5. make-it-fail can't be changed by unprivileged user and aggressive stress testing better be done from an unprivileged user. Similarly, this would require opening the debugfs files to the unprivileged user, as he would need to reopen at least times file (not possible to pre-open before dropping privs). The proposed interface solves all of the above (see the example). We want to integrate this into syzkaller fuzzer. A prototype has found 10 bugs in kernel in first day of usage: https://groups.google.com/forum/#!searchin/syzkaller/%22FAULT_INJECTION%22%7Csort:relevance I've made the current interface work with all types of our sandboxes. For setuid the secret sauce was prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) to make /proc entries non-root owned. So I am fine with the current version of the code. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/20170328130128.101773-1-dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christoph Lameter 提交于
The reason to disable interrupts seems to be to avoid switching to a different processor while handling per cpu data using individual loads and stores. If we use per cpu RMV primitives we will not have to disable interrupts. Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1705171055130.5898@east.gentwo.orgSigned-off-by: NChristoph Lameter <cl@linux.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 7月, 2017 1 次提交
-
-
由 Johannes Weiner 提交于
The kmem-specific functions do the same thing. Switch and drop. Link: http://lkml.kernel.org/r/20170530181724.27197-5-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-