- 29 8月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit b63f20a778c88b6a04458ed6ffc69da953d3a109 upstream. Use 'lea' instead of 'add' when adjusting %rsp in CALL_NOSPEC so as to avoid clobbering flags. KVM's emulator makes indirect calls into a jump table of sorts, where the destination of the CALL_NOSPEC is a small blob of code that performs fast emulation by executing the target instruction with fixed operands. adcb_al_dl: 0x000339f8 <+0>: adc %dl,%al 0x000339fa <+2>: ret A major motiviation for doing fast emulation is to leverage the CPU to handle consumption and manipulation of arithmetic flags, i.e. RFLAGS is both an input and output to the target of CALL_NOSPEC. Clobbering flags results in all sorts of incorrect emulation, e.g. Jcc instructions often take the wrong path. Sans the nops... asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n" 0x0003595a <+58>: mov 0xc0(%ebx),%eax 0x00035960 <+64>: mov 0x60(%ebx),%edx 0x00035963 <+67>: mov 0x90(%ebx),%ecx 0x00035969 <+73>: push %edi 0x0003596a <+74>: popf 0x0003596b <+75>: call *%esi 0x000359a0 <+128>: pushf 0x000359a1 <+129>: pop %edi 0x000359a2 <+130>: mov %eax,0xc0(%ebx) 0x000359b1 <+145>: mov %edx,0x60(%ebx) ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); 0x000359a8 <+136>: mov -0x10(%ebp),%eax 0x000359ab <+139>: and $0x8d5,%edi 0x000359b4 <+148>: and $0xfffff72a,%eax 0x000359b9 <+153>: or %eax,%edi 0x000359bd <+157>: mov %edi,0x4(%ebx) For the most part this has gone unnoticed as emulation of guest code that can trigger fast emulation is effectively limited to MMIO when running on modern hardware, and MMIO is rarely, if ever, accessed by instructions that affect or consume flags. Breakage is almost instantaneous when running with unrestricted guest disabled, in which case KVM must emulate all instructions when the guest has invalid state, e.g. when the guest is in Big Real Mode during early BIOS. Fixes: 776b043848fd2 ("x86/retpoline: Add initial retpoline support") Fixes: 1a29b5b7 ("KVM: x86: Make indirect calls in emulator speculation safe") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190822211122.27579-1-sean.j.christopherson@intel.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 16 8月, 2019 1 次提交
-
-
由 Wanpeng Li 提交于
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a146 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 07 8月, 2019 7 次提交
-
-
由 Thomas Gleixner 提交于
commit f36cf386e3fec258a341d446915862eded3e13d8 upstream Intel provided the following information: On all current Atom processors, instructions that use a segment register value (e.g. a load or store) will not speculatively execute before the last writer of that segment retires. Thus they will not use a speculatively written segment value. That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS entry paths can be excluded from the extra LFENCE if PTI is disabled. Create a separate bug flag for the through SWAPGS speculation and mark all out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs are excluded from the whole mitigation mess anyway. Reported-by: NAndrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NTyler Hicks <tyhicks@canonical.com> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Josh Poimboeuf 提交于
commit 18ec54fdd6d18d92025af097cd042a75cf0ea24c upstream Spectre v1 isn't only about array bounds checks. It can affect any conditional checks. The kernel entry code interrupt, exception, and NMI handlers all have conditional swapgs checks. Those may be problematic in the context of Spectre v1, as kernel code can speculatively run with a user GS. For example: if (coming from user space) swapgs mov %gs:<percpu_offset>, %reg mov (%reg), %reg1 When coming from user space, the CPU can speculatively skip the swapgs, and then do a speculative percpu load using the user GS value. So the user can speculatively force a read of any kernel value. If a gadget exists which uses the percpu value as an address in another load/store, then the contents of the kernel value may become visible via an L1 side channel attack. A similar attack exists when coming from kernel space. The CPU can speculatively do the swapgs, causing the user GS to get used for the rest of the speculative window. The mitigation is similar to a traditional Spectre v1 mitigation, except: a) index masking isn't possible; because the index (percpu offset) isn't user-controlled; and b) an lfence is needed in both the "from user" swapgs path and the "from kernel" non-swapgs path (because of the two attacks described above). The user entry swapgs paths already have SWITCH_TO_KERNEL_CR3, which has a CR3 write when PTI is enabled. Since CR3 writes are serializing, the lfences can be skipped in those cases. On the other hand, the kernel entry swapgs paths don't depend on PTI. To avoid unnecessary lfences for the user entry case, create two separate features for alternative patching: X86_FEATURE_FENCE_SWAPGS_USER X86_FEATURE_FENCE_SWAPGS_KERNEL Use these features in entry code to patch in lfences where needed. The features aren't enabled yet, so there's no functional change. Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NDave Hansen <dave.hansen@intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Fenghua Yu 提交于
commit acec0ce081de0c36459eea91647faf99296445a3 upstream It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two whole feature bits words. To better utilize feature words, re-define word 11 to host scattered features and move the four X86_FEATURE_CQM_* features into Linux defined word 11. More scattered features can be added in word 11 in the future. Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a Linux-defined leaf. Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful name in the next patch when CPUID.7.1:EAX occupies world 12. Maximum number of RMID and cache occupancy scale are retrieved from CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the code into a separate function. KVM doesn't support resctrl now. So it's safe to move the X86_FEATURE_CQM_* features to scattered features word 11 for KVM. Signed-off-by: NFenghua Yu <fenghua.yu@intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Aaron Lewis <aaronlewis@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Babu Moger <babu.moger@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Nadav Amit <namit@vmware.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Ravi V Shankar <ravi.v.shankar@intel.com> Cc: Sherry Hurwitz <sherry.hurwitz@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Lendacky <Thomas.Lendacky@amd.com> Cc: x86 <x86@kernel.org> Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Josh Poimboeuf 提交于
[ Upstream commit 083db6764821996526970e42d09c1ab2f4155dd4 ] The __raw_callee_save_*() functions have an ELF symbol size of zero, which confuses objtool and other tools. Fixes a bunch of warnings like the following: arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_pte_val() is missing an ELF size annotation arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_pgd_val() is missing an ELF size annotation arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_make_pte() is missing an ELF size annotation arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_make_pgd() is missing an ELF size annotation Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NJuergen Gross <jgross@suse.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/afa6d49bb07497ca62e4fc3b27a2d0cece545b4e.1563413318.git.jpoimboe@redhat.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Josh Poimboeuf 提交于
[ Upstream commit 3901336ed9887b075531bffaeef7742ba614058b ] After making a change to improve objtool's sibling call detection, it started showing the following warning: arch/x86/kvm/vmx/nested.o: warning: objtool: .fixup+0x15: sibling call from callable instruction with modified stack frame The problem is the ____kvm_handle_fault_on_reboot() macro. It does a fake call by pushing a fake RIP and doing a jump. That tricks the unwinder into printing the function which triggered the exception, rather than the .fixup code. Instead of the hack to make it look like the original function made the call, just change the macro so that the original function actually does make the call. This allows removal of the hack, and also makes objtool happy. I triggered a vmx instruction exception and verified that the stack trace is still sane: kernel BUG at arch/x86/kvm/x86.c:358! invalid opcode: 0000 [#1] SMP PTI CPU: 28 PID: 4096 Comm: qemu-kvm Not tainted 5.2.0+ #16 Hardware name: Lenovo THINKSYSTEM SD530 -[7X2106Z000]-/-[7X2106Z000]-, BIOS -[TEE113Z-1.00]- 07/17/2017 RIP: 0010:kvm_spurious_fault+0x5/0x10 Code: 00 00 00 00 00 8b 44 24 10 89 d2 45 89 c9 48 89 44 24 10 8b 44 24 08 48 89 44 24 08 e9 d4 40 22 00 0f 1f 40 00 0f 1f 44 00 00 <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffbf91c683bd00 EFLAGS: 00010246 RAX: 000061f040000000 RBX: ffff9e159c77bba0 RCX: ffff9e15a5c87000 RDX: 0000000665c87000 RSI: ffff9e15a5c87000 RDI: ffff9e159c77bba0 RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9e15a5c87000 R10: 0000000000000000 R11: fffff8f2d99721c0 R12: ffff9e159c77bba0 R13: ffffbf91c671d960 R14: ffff9e159c778000 R15: 0000000000000000 FS: 00007fa341cbe700(0000) GS:ffff9e15b7400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fdd38356804 CR3: 00000006759de003 CR4: 00000000007606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: loaded_vmcs_init+0x4f/0xe0 alloc_loaded_vmcs+0x38/0xd0 vmx_create_vcpu+0xf7/0x600 kvm_vm_ioctl+0x5e9/0x980 ? __switch_to_asm+0x40/0x70 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 ? __switch_to_asm+0x34/0x70 ? free_one_page+0x13f/0x4e0 do_vfs_ioctl+0xa4/0x630 ksys_ioctl+0x60/0x90 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x55/0x1c0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fa349b1ee5b Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/64a9b64d127e87b6920a97afde8e96ea76f6524e.1563413318.git.jpoimboe@redhat.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Zhenzhong Duan 提交于
[ Upstream commit b23e5844dfe78a80ba672793187d3f52e4b528d7 ] Commit 7457c0da024b ("x86/alternatives: Add int3_emulate_call() selftest") is used to ensure there is a gap setup in int3 exception stack which could be used for inserting call return address. This gap is missed in XEN PV int3 exception entry path, then below panic triggered: [ 0.772876] general protection fault: 0000 [#1] SMP NOPTI [ 0.772886] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.2.0+ #11 [ 0.772893] RIP: e030:int3_magic+0x0/0x7 [ 0.772905] RSP: 3507:ffffffff82203e98 EFLAGS: 00000246 [ 0.773334] Call Trace: [ 0.773334] alternative_instructions+0x3d/0x12e [ 0.773334] check_bugs+0x7c9/0x887 [ 0.773334] ? __get_locked_pte+0x178/0x1f0 [ 0.773334] start_kernel+0x4ff/0x535 [ 0.773334] ? set_init_arg+0x55/0x55 [ 0.773334] xen_start_kernel+0x571/0x57a For 64bit PV guests, Xen's ABI enters the kernel with using SYSRET, with %rcx/%r11 on the stack. To convert back to "normal" looking exceptions, the xen thunks do 'xen_*: pop %rcx; pop %r11; jmp *'. E.g. Extracting 'xen_pv_trap xenint3' we have: xen_xenint3: pop %rcx; pop %r11; jmp xenint3 As xenint3 and int3 entry code are same except xenint3 doesn't generate a gap, we can fix it by using int3 and drop useless xenint3. Signed-off-by: NZhenzhong Duan <zhenzhong.duan@oracle.com> Reviewed-by: NJuergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Qian Cai 提交于
[ Upstream commit ec6335586953b0df32f83ef696002063090c7aef ] There are many compiler warnings like this, In file included from ./arch/x86/include/asm/smp.h:13, from ./arch/x86/include/asm/mmzone_64.h:11, from ./arch/x86/include/asm/mmzone.h:5, from ./include/linux/mmzone.h:969, from ./include/linux/gfp.h:6, from ./include/linux/mm.h:10, from arch/x86/kernel/apic/io_apic.c:34: arch/x86/kernel/apic/io_apic.c: In function 'check_timer': ./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits] if ((v) <= apic_verbosity) \ ^~ arch/x86/kernel/apic/io_apic.c:2160:2: note: in expansion of macro 'apic_printk' apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " ^~~~~~~~~~~ ./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits] if ((v) <= apic_verbosity) \ ^~ arch/x86/kernel/apic/io_apic.c:2207:4: note: in expansion of macro 'apic_printk' apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " ^~~~~~~~~~~ APIC_QUIET is 0, so silence them by making apic_verbosity type int. Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1562621805-24789-1-git-send-email-cai@lca.pwSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 26 7月, 2019 3 次提交
-
-
由 Peter Zijlstra 提交于
[ Upstream commit 69d927bba39517d0980462efc051875b7f4db185 ] Recent probing at the Linux Kernel Memory Model uncovered a 'surprise'. Strongly ordered architectures where the atomic RmW primitive implies full memory ordering and smp_mb__{before,after}_atomic() are a simple barrier() (such as x86) fail for: *x = 1; atomic_inc(u); smp_mb__after_atomic(); r0 = *y; Because, while the atomic_inc() implies memory order, it (surprisingly) does not provide a compiler barrier. This then allows the compiler to re-order like so: atomic_inc(u); *x = 1; smp_mb__after_atomic(); r0 = *y; Which the CPU is then allowed to re-order (under TSO rules) like: atomic_inc(u); r0 = *y; *x = 1; And this very much was not intended. Therefore strengthen the atomic RmW ops to include a compiler barrier. NOTE: atomic_{or,and,xor} and the bitops already had the compiler barrier. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Aaron Lewis 提交于
[ Upstream commit cbb99c0f588737ec98c333558922ce47e9a95827 ] Add the CPUID enumeration for Intel's de-feature bits to accommodate passing these de-features through to kvm guests. These de-features are (from SDM vol 1, section 8.1.8): - X86_FEATURE_FDP_EXCPTN_ONLY: If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the data pointer (FDP) is updated only for the x87 non-control instructions that incur unmasked x87 exceptions. - X86_FEATURE_ZERO_FCS_FDS: If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates FCS and FDS; it saves each as 0000H. Signed-off-by: NAaron Lewis <aaronlewis@google.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NJim Mattson <jmattson@google.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: marcorr@google.com Cc: Peter Feiner <pfeiner@google.com> Cc: pshier@google.com Cc: Robert Hoo <robert.hu@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Lendacky <Thomas.Lendacky@amd.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190605220252.103406-1-aaronlewis@google.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Rajneesh Bhardwaj 提交于
[ Upstream commit e32d045cd4ba06b59878323e434bad010e78e658 ] Add the CPUID model number of Ice Lake Neural Network Processor for Deep Learning Inference (ICL-NNPI) to the Intel family list. Ice Lake NNPI uses model number 0x9D and this will be documented in a future version of Intel Software Development Manual. Signed-off-by: NRajneesh Bhardwaj <rajneesh.bhardwaj@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: bp@suse.de Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: platform-driver-x86@vger.kernel.org Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Len Brown <lenb@kernel.org> Cc: Linux PM <linux-pm@vger.kernel.org> Link: https://lkml.kernel.org/r/20190606012419.13250-1-rajneesh.bhardwaj@linux.intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 21 7月, 2019 2 次提交
-
-
由 Thomas Gleixner 提交于
commit f8a8fe61fec8006575699559ead88b0b833d5cad upstream Quite some time ago the interrupt entry stubs for unused vectors in the system vector range got removed and directly mapped to the spurious interrupt vector entry point. Sounds reasonable, but it's subtly broken. The spurious interrupt vector entry point pushes vector number 0xFF on the stack which makes the whole logic in __smp_spurious_interrupt() pointless. As a consequence any spurious interrupt which comes from a vector != 0xFF is treated as a real spurious interrupt (vector 0xFF) and not acknowledged. That subsequently stalls all interrupt vectors of equal and lower priority, which brings the system to a grinding halt. This can happen because even on 64-bit the system vector space is not guaranteed to be fully populated. A full compile time handling of the unused vectors is not possible because quite some of them are conditonally populated at runtime. Bring the entry stubs back, which wastes 160 bytes if all stubs are unused, but gains the proper handling back. There is no point to selectively spare some of the stubs which are known at compile time as the required code in the IDT management would be way larger and convoluted. Do not route the spurious entries through common_interrupt and do_IRQ() as the original code did. Route it to smp_spurious_interrupt() which evaluates the vector number and acts accordingly now that the real vector numbers are handed in. Fixup the pr_warn so the actual spurious vector (0xff) is clearly distiguished from the other vectors and also note for the vectored case whether it was pending in the ISR or not. "Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen." "Spurious interrupt vector 0xed on CPU#1. Acked." "Spurious interrupt vector 0xee on CPU#1. Not pending!." Fixes: 2414e021 ("x86: Avoid building unused IRQ entry stubs") Reported-by: NJan Kiszka <jan.kiszka@siemens.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Jan Beulich <jbeulich@suse.com> Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit b7107a67f0d125459fe41f86e8079afd1a5e0b15 upstream Since the rework of the vector management, warnings about spurious interrupts have been reported. Robert provided some more information and did an initial analysis. The following situation leads to these warnings: CPU 0 CPU 1 IO_APIC interrupt is raised sent to CPU1 Unable to handle immediately (interrupts off, deep idle delay) mask() ... free() shutdown() synchronize_irq() clear_vector() do_IRQ() -> vector is clear Before the rework the vector entries of legacy interrupts were statically assigned and occupied precious vector space while most of them were unused. Due to that the above situation was handled silently because the vector was handled and the core handler of the assigned interrupt descriptor noticed that it is shut down and returned. While this has been usually observed with legacy interrupts, this situation is not limited to them. Any other interrupt source, e.g. MSI, can cause the same issue. After adding proper synchronization for level triggered interrupts, this can only happen for edge triggered interrupts where the IO-APIC obviously cannot provide information about interrupts in flight. While the spurious warning is actually harmless in this case it worries users and driver developers. Handle it gracefully by marking the vector entry as VECTOR_SHUTDOWN instead of VECTOR_UNUSED when the vector is freed up. If that above late handling happens the spurious detector will not complain and switch the entry to VECTOR_UNUSED. Any subsequent spurious interrupt on that line will trigger the spurious warning as before. Fixes: 464d1230 ("x86/vector: Switch IOAPIC to global reservation mode") Reported-by: NRobert Hodaszi <Robert.Hodaszi@digi.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>- Tested-by: NRobert Hodaszi <Robert.Hodaszi@digi.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/20190628111440.459647741@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 7月, 2019 1 次提交
-
-
由 Kan Liang 提交于
[ Upstream commit e35faeb64146f2015f2aec14b358ae508e4066db ] Add the CPUID model numbers of Icelake (ICL) desktop and server processors to the Intel family list. [ Qiuxu: Sort the macros by model number. ] Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Rajneesh Bhardwaj <rajneesh.bhardwaj@linux.intel.com> Cc: rui.zhang@intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190603134122.13853-1-kan.liang@linux.intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 04 6月, 2019 1 次提交
-
-
由 Masahiro Yamada 提交于
commit e9666d10a5677a494260d60d1fa0b73cc7646eb3 upstream. Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: NSedat Dilek <sedat.dilek@gmail.com> [nc: Fix trivial conflicts in 4.19 arch/xtensa/kernel/jump_label.c doesn't exist yet Ensured CC_HAVE_ASM_GOTO and HAVE_JUMP_LABEL were sufficiently eliminated] Signed-off-by: NNathan Chancellor <natechancellor@gmail.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 5月, 2019 1 次提交
-
-
由 Steven Rostedt (VMware) 提交于
commit 693713cbdb3a4bda5a8a678c31f06560bbb14657 upstream. User Mode Linux does not have access to the ip or sp fields of the pt_regs, and accessing them causes UML to fail to build. Hide the int3_emulate_jmp() and int3_emulate_call() instructions from UML, as it doesn't need them anyway. Reported-by: Nkbuild test robot <lkp@intel.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 26 5月, 2019 1 次提交
-
-
由 Peter Zijlstra 提交于
commit 4b33dadf37666c0860b88f9e52a16d07bf6d0b03 upstream. In order to allow breakpoints to emulate call instructions, they need to push the return address onto the stack. The x86_64 int3 handler adds a small gap to allow the stack to grow some. Use this gap to add the return address to be able to emulate a call instruction at the breakpoint location. These helper functions are added: int3_emulate_jmp(): changes the location of the regs->ip to return there. (The next two are only for x86_64) int3_emulate_push(): to push the address onto the gap in the stack int3_emulate_call(): push the return address and change regs->ip Cc: Andy Lutomirski <luto@kernel.org> Cc: Nicolai Stange <nstange@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: the arch/x86 maintainers <x86@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Petr Mladek <pmladek@suse.com> Cc: Joe Lawrence <joe.lawrence@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nayna Jain <nayna@linux.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: "open list:KERNEL SELFTEST FRAMEWORK" <linux-kselftest@vger.kernel.org> Cc: stable@vger.kernel.org Fixes: b700e7f0 ("livepatch: kernel: add support for live patching") Tested-by: NNicolai Stange <nstange@suse.de> Reviewed-by: NNicolai Stange <nstange@suse.de> Reviewed-by: NMasami Hiramatsu <mhiramat@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> [ Modified to only work for x86_64 and added comment to int3_emulate_push() ] Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 22 5月, 2019 1 次提交
-
-
由 Peter Zijlstra 提交于
commit 6690e86be83ac75832e461c141055b5d601c0a6d upstream. Effectively reverts commit: 2c7577a7 ("sched/x86_64: Don't save flags on context switch") Specifically because SMAP uses FLAGS.AC which invalidates the claim that the kernel has clean flags. In particular; while preemption from interrupt return is fine (the IRET frame on the exception stack contains FLAGS) it breaks any code that does synchonous scheduling, including preempt_enable(). This has become a significant issue ever since commit: 5b24a7a2 ("Add 'unsafe' user access functions for batched accesses") provided for means of having 'normal' C code between STAC / CLAC, exposing the FLAGS.AC state. So far this hasn't led to trouble, however fix it before it comes apart. Reported-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NAndy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@kernel.org Fixes: 5b24a7a2 ("Add 'unsafe' user access functions for batched accesses") Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 5月, 2019 9 次提交
-
-
由 Thomas Gleixner 提交于
commit 22dd8365088b6403630b82423cf906491859b65e upstream In virtualized environments it can happen that the host has the microcode update which utilizes the VERW instruction to clear CPU buffers, but the hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit to guests. Introduce an internal mitigation mode VMWERV which enables the invocation of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the system has no updated microcode this results in a pointless execution of the VERW instruction wasting a few CPU cycles. If the microcode is updated, but not exposed to a guest then the CPU buffers will be cleared. That said: Virtual Machines Will Eventually Receive Vaccine Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream Now that the mitigations are in place, add a command line parameter to control the mitigation, a mitigation selector function and a SMT update mechanism. This is the minimal straight forward initial implementation which just provides an always on/off mode. The command line parameter is: mds=[full|off] This is consistent with the existing mitigations for other speculative hardware vulnerabilities. The idle invocation is dynamically updated according to the SMT state of the system similar to the dynamic update of the STIBP mitigation. The idle mitigation is limited to CPUs which are only affected by MSBDS and not any other variant, because the other variants cannot be mitigated on SMT enabled systems. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream Add a static key which controls the invocation of the CPU buffer clear mechanism on exit to user space and add the call into prepare_exit_to_usermode() and do_nmi() right before actually returning. Add documentation which kernel to user space transition this covers and explain why some corner cases are not mitigated. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 6a9e529272517755904b7afa639f6db59ddb793e upstream The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by clearing the affected CPU buffers. The mechanism for clearing the buffers uses the unused and obsolete VERW instruction in combination with a microcode update which triggers a CPU buffer clear when VERW is executed. Provide a inline function with the assembly magic. The argument of the VERW instruction must be a memory operand as documented: "MD_CLEAR enumerates that the memory-operand variant of VERW (for example, VERW m16) has been extended to also overwrite buffers affected by MDS. This buffer overwriting functionality is not guaranteed for the register operand variant of VERW." Documentation also recommends to use a writable data segment selector: "The buffer overwriting occurs regardless of the result of the VERW permission check, as well as when the selector is null or causes a descriptor load segment violation. However, for lowest latency we recommend using a selector that indicates a valid writable data segment." Add x86 specific documentation about MDS and the internal workings of the mitigation. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit e261f209c3666e842fd645a1e31f001c3a26def9 upstream This bug bit is set on CPUs which are only affected by Microarchitectural Store Buffer Data Sampling (MSBDS) and not by any other MDS variant. This is important because the Store Buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. This transition can be mitigated. That means that for CPUs which are only affected by MSBDS SMT can be enabled, if the CPU is not affected by other SMT sensitive vulnerabilities, e.g. L1TF. The XEON PHI variants fall into that category. Also the Silvermont/Airmont ATOMs, but for them it's not really relevant as they do not support SMT, but mark them for completeness sake. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Andi Kleen 提交于
commit ed5194c2732c8084af9fd159c146ea92bf137128 upstream Microarchitectural Data Sampling (MDS), is a class of side channel attacks on internal buffers in Intel CPUs. The variants are: - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126) - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130) - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127) MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a dependent load (store-to-load forwarding) as an optimization. The forward can also happen to a faulting or assisting load operation for a different memory address, which can be exploited under certain conditions. Store buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage L1 miss situations and to hold data which is returned or sent in response to a memory or I/O operation. Fill buffers can forward data to a load operation and also write data to the cache. When the fill buffer is deallocated it can retain the stale data of the preceding operations which can then be forwarded to a faulting or assisting load operation, which can be exploited under certain conditions. Fill buffers are shared between Hyper-Threads so cross thread leakage is possible. MLDPS leaks Load Port Data. Load ports are used to perform load operations from memory or I/O. The received data is then forwarded to the register file or a subsequent operation. In some implementations the Load Port can contain stale data from a previous operation which can be forwarded to faulting or assisting loads under certain conditions, which again can be exploited eventually. Load ports are shared between Hyper-Threads so cross thread leakage is possible. All variants have the same mitigation for single CPU thread case (SMT off), so the kernel can treat them as one MDS issue. Add the basic infrastructure to detect if the current CPU is affected by MDS. [ tglx: Rewrote changelog ] Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit d8eabc37310a92df40d07c5a8afc53cebf996716 upstream Greg pointed out that speculation related bit defines are using (1 << N) format instead of BIT(N). Aside of that (1 << N) is wrong as it should use 1UL at least. Clean it up. [ Josh Poimboeuf: Fix tools build ] Reported-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Peter Zijlstra 提交于
commit f2c4db1bd80720cd8cb2a5aa220d9bc9f374f04e upstream Going primarily by: https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors with additional information gleaned from other related pages; notably: - Bonnell shrink was called Saltwell - Moorefield is the Merriefield refresh which makes it Airmont The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE for i in `git grep -l FAM6_ATOM` ; do sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \ -e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \ -e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \ -e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \ -e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \ -e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \ -e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \ -e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \ -e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \ -e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \ -e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i} done Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: dave.hansen@linux.intel.com Cc: len.brown@intel.com Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 02 5月, 2019 1 次提交
-
-
commit 12209993e98c5fa1855c467f22a24e3d5b8be205 upstream. There is one user of __kernel_fpu_begin() and before invoking it, it invokes preempt_disable(). So it could invoke kernel_fpu_begin() right away. The 32bit version of arch_efi_call_virt_setup() and arch_efi_call_virt_teardown() does this already. The comment above *kernel_fpu*() claims that before invoking __kernel_fpu_begin() preemption should be disabled and that KVM is a good example of doing it. Well, KVM doesn't do that since commit f775b13e ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") so it is not an example anymore. With EFI gone as the last user of __kernel_fpu_{begin|end}(), both can be made static and not exported anymore. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NRik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kvm ML <kvm@vger.kernel.org> Cc: linux-efi <linux-efi@vger.kernel.org> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20181129150210.2k4mawt37ow6c2vq@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 4月, 2019 3 次提交
-
-
由 Alexander Potapenko 提交于
commit 5b77e95dd7790ff6c8fbf1cd8d0104ebed818a03 upstream. There's a number of problems with how arch/x86/include/asm/bitops.h is currently using assembly constraints for the memory region bitops are modifying: 1) Use memory clobber in bitops that touch arbitrary memory Certain bit operations that read/write bits take a base pointer and an arbitrarily large offset to address the bit relative to that base. Inline assembly constraints aren't expressive enough to tell the compiler that the assembly directive is going to touch a specific memory location of unknown size, therefore we have to use the "memory" clobber to indicate that the assembly is going to access memory locations other than those listed in the inputs/outputs. To indicate that BTR/BTS instructions don't necessarily touch the first sizeof(long) bytes of the argument, we also move the address to assembly inputs. This particular change leads to size increase of 124 kernel functions in a defconfig build. For some of them the diff is in NOP operations, other end up re-reading values from memory and may potentially slow down the execution. But without these clobbers the compiler is free to cache the contents of the bitmaps and use them as if they weren't changed by the inline assembly. 2) Use byte-sized arguments for operations touching single bytes. Passing a long value to ANDB/ORB/XORB instructions makes the compiler treat sizeof(long) bytes as being clobbered, which isn't the case. This may theoretically lead to worse code in the case of heavy optimization. Practical impact: I've built a defconfig kernel and looked through some of the functions generated by GCC 7.3.0 with and without this clobber, and didn't spot any miscompilations. However there is a (trivial) theoretical case where this code leads to miscompilation: https://lkml.org/lkml/2019/3/28/393 using just GCC 8.3.0 with -O2. It isn't hard to imagine someone writes such a function in the kernel someday. So the primary motivation is to fix an existing misuse of the asm directive, which happens to work in certain configurations now, but isn't guaranteed to work under different circumstances. [ --mingo: Added -stable tag because defconfig only builds a fraction of the kernel and the trivial testcase looks normal enough to be used in existing or in-development code. ] Signed-off-by: NAlexander Potapenko <glider@google.com> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: James Y Knight <jyknight@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190402112813.193378-1-glider@google.com [ Edited the changelog, tidied up one of the defines. ] Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Rasmus Villemoes 提交于
commit 88ca66d8540ca26119b1428cddb96b37925bdf01 upstream. The minimum supported gcc version is >= 4.6, so these can be removed. Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190111084931.24601-1-linux@rasmusvillemoes.dkSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Dan Carpenter 提交于
commit 42d8644bd77dd2d747e004e367cb0c895a606f39 upstream. The "call" variable comes from the user in privcmd_ioctl_hypercall(). It's an offset into the hypercall_page[] which has (PAGE_SIZE / 32) elements. We need to put an upper bound on it to prevent an out of bounds access. Cc: stable@vger.kernel.org Fixes: 1246ae0b ("xen: add variable hypercall caller") Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 03 4月, 2019 2 次提交
-
-
由 Sean Christopherson 提交于
commit 0cf9135b773bf32fba9dd8e6699c1b331ee4b749 upstream. The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Sean Christopherson 提交于
commit 45def77ebf79e2e8942b89ed79294d97ce914fa0 upstream. Most (all?) x86 platforms provide a port IO based reset mechanism, e.g. OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM that it is doing a reset, e.g. Qemu jams vCPU state and resumes running. To avoid corruping %rip after such a reset, commit 0967b7bf ("KVM: Skip pio instruction when it is emulated, not executed") changed the behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the instruction prior to exiting to userspace. Full emulation doesn't need such tricks becase re-emulating the instruction will naturally handle %rip being changed to point at the reset vector. Updating %rip prior to executing to userspace has several drawbacks: - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation fails it will likely yell about the wrong address. - Single step exits to userspace for are effectively dropped as KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO. - Behavior of PIO emulation is different depending on whether it goes down the fast path or the slow path. Rather than skip the PIO instruction before exiting to userspace, snapshot the linear %rip and cancel PIO completion if the current value does not match the snapshot. For a 64-bit vCPU, i.e. the most common scenario, the snapshot and comparison has negligible overhead as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra VMREAD in this case. All other alternatives to snapshotting the linear %rip that don't rely on an explicit reset announcenment suffer from one corner case or another. For example, canceling PIO completion on any write to %rip fails if userspace does a save/restore of %rip, and attempting to avoid that issue by canceling PIO only if %rip changed then fails if PIO collides with the reset %rip. Attempting to zero in on the exact reset vector won't work for APs, which means adding more hooks such as the vCPU's MP_STATE, and so on and so forth. Checking for a linear %rip match technically suffers from corner cases, e.g. userspace could theoretically rewrite the underlying code page and expect a different instruction to execute, or the guest hardcodes a PIO reset at 0xfffffff0, but those are far, far outside of what can be considered normal operation. Fixes: 432baf60 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O") Cc: <stable@vger.kernel.org> Reported-by: NJim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 27 3月, 2019 1 次提交
-
-
由 Jann Horn 提交于
commit f4f34e1b82eb4219d8eaa1c7e2e17ca219a6a2b5 upstream. When the frame unwinder is invoked for an oops caused by a call to NULL, it currently skips the parent function because BP still points to the parent's stack frame; the (nonexistent) current function only has the first half of a stack frame, and BP doesn't point to it yet. Add a special case for IP==0 that calculates a fake BP from SP, then uses the real BP for the next frame. Note that this handles first_frame specially: Return information about the parent function as long as the saved IP is >=first_frame, even if the fake BP points below it. With an artificially-added NULL call in prctl_set_seccomp(), before this patch, the trace is: Call Trace: ? prctl_set_seccomp+0x3a/0x50 __x64_sys_prctl+0x457/0x6f0 ? __ia32_sys_prctl+0x750/0x750 do_syscall_64+0x72/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 After this patch, the trace is: Call Trace: prctl_set_seccomp+0x3a/0x50 __x64_sys_prctl+0x457/0x6f0 ? __ia32_sys_prctl+0x750/0x750 do_syscall_64+0x72/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NJosh Poimboeuf <jpoimboe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michal Marek <michal.lkml@markovi.net> Cc: linux-kbuild@vger.kernel.org Link: https://lkml.kernel.org/r/20190301031201.7416-1-jannh@google.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 3月, 2019 2 次提交
-
-
由 Sean Christopherson 提交于
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Rajneesh Bhardwaj 提交于
[ Upstream commit 8cd8f0ce0d6aafe661cb3d6781c8b82bc696c04d ] Add the CPUID model number of Icelake (ICL) mobile processors to the Intel family list. Icelake U/Y series uses model number 0x7E. Signed-off-by: NRajneesh Bhardwaj <rajneesh.bhardwaj@linux.intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "David E. Box" <david.e.box@intel.com> Cc: dvhart@infradead.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: platform-driver-x86@vger.kernel.org Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190214115712.19642-2-rajneesh.bhardwaj@linux.intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 14 3月, 2019 2 次提交
-
-
由 Peter Zijlstra (Intel) 提交于
commit 52f64909409c17adf54fcf5f9751e0544ca3a6b4 upstream Skylake systems will receive a microcode update to address a TSX errata. This microcode will (by default) clobber PMC3 when TSX instructions are (speculatively or not) executed. It also provides an MSR to cause all TSX transaction to abort and preserve PMC3. Add the CPUID enumeration and MSR definition. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Qian Cai 提交于
[ Upstream commit a8e911d13540487942d53137c156bd7707f66e5d ] If the kernel is configured with KASAN_EXTRA, the stack size is increasted significantly because this option sets "-fstack-reuse" to "none" in GCC [1]. As a result, it triggers stack overrun quite often with 32k stack size compiled using GCC 8. For example, this reproducer https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/madvise/madvise06.c triggers a "corrupted stack end detected inside scheduler" very reliably with CONFIG_SCHED_STACK_END_CHECK enabled. There are just too many functions that could have a large stack with KASAN_EXTRA due to large local variables that have been called over and over again without being able to reuse the stacks. Some noticiable ones are size 7648 shrink_page_list 3584 xfs_rmap_convert 3312 migrate_page_move_mapping 3312 dev_ethtool 3200 migrate_misplaced_transhuge_page 3168 copy_process There are other 49 functions are over 2k in size while compiling kernel with "-Wframe-larger-than=" even with a related minimal config on this machine. Hence, it is too much work to change Makefiles for each object to compile without "-fsanitize-address-use-after-scope" individually. [1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715#c23 Although there is a patch in GCC 9 to help the situation, GCC 9 probably won't be released in a few months and then it probably take another 6-month to 1-year for all major distros to include it as a default. Hence, the stack usage with KASAN_EXTRA can be revisited again in 2020 when GCC 9 is everywhere. Until then, this patch will help users avoid stack overrun. This has already been fixed for arm64 for the same reason via 6e8830674ea ("arm64: kasan: Increase stack size for KASAN_EXTRA"). Link: http://lkml.kernel.org/r/20190109215209.2903-1-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 3月, 2019 1 次提交
-
-
由 Andy Lutomirski 提交于
commit 2a418cf3f5f1caf911af288e978d61c9844b0695 upstream. When calling __put_user(foo(), ptr), the __put_user() macro would call foo() in between __uaccess_begin() and __uaccess_end(). If that code were buggy, then those bugs would be run without SMAP protection. Fortunately, there seem to be few instances of the problem in the kernel. Nevertheless, __put_user() should be fixed to avoid doing this. Therefore, evaluate __put_user()'s argument before setting AC. This issue was noticed when an objtool hack by Peter Zijlstra complained about genregs_get() and I compared the assembly output to the C source. [ bp: Massage commit message and fixed up whitespace. ] Fixes: 11f1a4b9 ("x86: reorganize SMAP handling in user space accesses") Signed-off-by: NAndy Lutomirski <luto@kernel.org> Signed-off-by: NBorislav Petkov <bp@suse.de> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20190225125231.845656645@infradead.orgSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-