- 23 2月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
At CPU hotunplug the corresponding per cpu matrix allocator is shut down and the allocated interrupt bits are discarded under the assumption that all allocated bits have been either migrated away or shut down through the managed interrupts mechanism. This is not true because interrupts which are not started up might have a vector allocated on the outgoing CPU. When the interrupt is started up later or completely shutdown and freed then the allocated vector is handed back, triggering warnings or causing accounting issues which result in suspend failures and other issues. Change the CPU hotplug mechanism of the matrix allocator so that the remaining allocations at unplug time are preserved and global accounting at hotplug is correctly readjusted to take the dormant vectors into account. Fixes: 2f75d9e1 ("genirq: Implement bitmap matrix allocator") Reported-by: NYuriy Vostrikov <delamonpansie@gmail.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NYuriy Vostrikov <delamonpansie@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180222112316.849980972@linutronix.de
-
- 18 1月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
Keith reported an issue with vector space exhaustion on a server machine which is caused by the i40e driver allocating 168 MSI interrupts when the driver is initialized, even when most of these interrupts are not used at all. The x86 vector allocation code tries to avoid the immediate allocation with the reservation mode, but the card uses MSI and does not support MSI entry masking, which prevents reservation mode and requires immediate vector allocation. The matrix allocator is a bit naive and prefers the first CPU in the cpumask which describes the possible target CPUs for an allocation. That results in allocating all 168 vectors on CPU0 which later causes vector space exhaustion when the NVMe driver tries to allocate managed interrupts on each CPU for the per CPU queues. Avoid this by finding the CPU which has the lowest vector allocation count to spread out the non managed interrupt accross the possible target CPUs. Fixes: 2f75d9e1 ("genirq: Implement bitmap matrix allocator") Reported-by: NKeith Busch <keith.busch@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NKeith Busch <keith.busch@intel.com> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801171557330.1777@nanos
-
- 05 12月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
The previous commit which made the operator precedence in irq_matrix_available() explicit made the implicit brokenness explicitely wrong. It was wrong in the original commit already. The overworked maintainer did not notice it either when merging the patch. Replace the confusing '?' construct by a simple and obvious if (). Fixes: 75f11338 ("genirq/matrix: Make - vs ?: Precedence explicit") Reported-by: NRasmus Villemoes <rasmus.villemoes@prevas.dk> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org>
-
- 24 11月, 2017 1 次提交
-
-
由 Kees Cook 提交于
Noticed with a Clang build. This improves the readability of the ?: expression, as it has lower precedence than the - expression. Show explicitly that - is evaluated first. Signed-off-by: NKees Cook <keescook@chromium.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20171122205645.GA27125@beast
-
- 26 9月, 2017 2 次提交
-
-
由 Thomas Gleixner 提交于
Add tracepoints for the irq bitmap matrix allocator. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NJuergen Gross <jgross@suse.com> Tested-by: NYu Chen <yu.c.chen@intel.com> Acked-by: NJuergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Alok Kataria <akataria@vmware.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rui Zhang <rui.zhang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Len Brown <lenb@kernel.org> Link: https://lkml.kernel.org/r/20170913213153.279468022@linutronix.de
-
由 Thomas Gleixner 提交于
Implement the infrastructure for a simple bitmap based allocator, which will replace the x86 vector allocator. It's in the core code as other architectures might be able to reuse/extend it. For now it only implements allocations for single CPUs, but it's simple to add multi CPU allocation support if required. The concept is rather simple: Global information: system_vector bitmap global accounting PerCPU information: allocation bitmap managed allocation bitmap local accounting The system vector bitmap is used to exclude vectors system wide from the allocation space. The allocation bitmap is used to keep track of per cpu used vectors. The managed allocation bitmap is used to reserve vectors for managed interrupts. When a regular (non managed) interrupt allocation happens then the following rule applies: tmpmap = system_map | alloc_map | managed_map find_zero_bit(tmpmap) Oring the bitmaps together gives the real available space. The same rule applies for reserving a managed interrupt vector. But contrary to the regular interrupts the reservation only marks the bit in the managed map and therefor excludes it from the regular allocations. The managed map is only cleaned out when the a managed interrupt is completely released and it stays alive accross CPU offline/online operations. For managed interrupt allocations the rule is: tmpmap = managed_map & ~alloc_map find_first_bit(tmpmap) This returns the first bit which is in the managed map, but not yet allocated in the allocation map. The allocation marks it in the allocation map and hands it back to the caller for use. The rest of the code are helper functions to handle the various requirements and the accounting which are necessary to replace the x86 vector allocation code. The result is a single patch as the evolution of this infrastructure cannot be represented in bits and pieces. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NJuergen Gross <jgross@suse.com> Tested-by: NYu Chen <yu.c.chen@intel.com> Acked-by: NJuergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Alok Kataria <akataria@vmware.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rui Zhang <rui.zhang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Len Brown <lenb@kernel.org> Link: https://lkml.kernel.org/r/20170913213153.185437174@linutronix.de
-