1. 10 11月, 2015 1 次提交
  2. 07 11月, 2015 2 次提交
    • M
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep... · d0164adc
      Mel Gorman 提交于
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
      
      __GFP_WAIT has been used to identify atomic context in callers that hold
      spinlocks or are in interrupts.  They are expected to be high priority and
      have access one of two watermarks lower than "min" which can be referred
      to as the "atomic reserve".  __GFP_HIGH users get access to the first
      lower watermark and can be called the "high priority reserve".
      
      Over time, callers had a requirement to not block when fallback options
      were available.  Some have abused __GFP_WAIT leading to a situation where
      an optimisitic allocation with a fallback option can access atomic
      reserves.
      
      This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
      cannot sleep and have no alternative.  High priority users continue to use
      __GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
      are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
      callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
      redefined as a caller that is willing to enter direct reclaim and wake
      kswapd for background reclaim.
      
      This patch then converts a number of sites
      
      o __GFP_ATOMIC is used by callers that are high priority and have memory
        pools for those requests. GFP_ATOMIC uses this flag.
      
      o Callers that have a limited mempool to guarantee forward progress clear
        __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
        into this category where kswapd will still be woken but atomic reserves
        are not used as there is a one-entry mempool to guarantee progress.
      
      o Callers that are checking if they are non-blocking should use the
        helper gfpflags_allow_blocking() where possible. This is because
        checking for __GFP_WAIT as was done historically now can trigger false
        positives. Some exceptions like dm-crypt.c exist where the code intent
        is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
        flag manipulations.
      
      o Callers that built their own GFP flags instead of starting with GFP_KERNEL
        and friends now also need to specify __GFP_KSWAPD_RECLAIM.
      
      The first key hazard to watch out for is callers that removed __GFP_WAIT
      and was depending on access to atomic reserves for inconspicuous reasons.
      In some cases it may be appropriate for them to use __GFP_HIGH.
      
      The second key hazard is callers that assembled their own combination of
      GFP flags instead of starting with something like GFP_KERNEL.  They may
      now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
      if it's missed in most cases as other activity will wake kswapd.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d0164adc
    • S
      Revert "ARM: dts: twl4030: Add iio properties for bci subnode" · 829a7da0
      Sebastian Reichel 提交于
      This reverts commit af19161a,
      which breaks the omap3 device tree build due to a wrong reference.
      
      I accidently queued this change via the power supply subsystem while
      telling Marek at the same time, that it should go through Tony.
      Following that I did miss Stephen's messages about the build failure in
      linux-next and since he switched to merging an older snapshot nobody
      else noticed the problem in my tree. I didn't notice myself, since I
      did not build any device tree files assuming none have changed by me.
      Signed-off-by: NSebastian Reichel <sre@kernel.org>
      Reported-by: NFelipe Balbi <balbi@ti.com>
      Tested-by: NFelipe Balbi <balbi@ti.com>
      Acked-by: NFelipe Balbi <balbi@ti.com>
      Tested-by: NKevin Hilman <khilman@linaro.org>
      Acked-by: NTony Lindgren <tony@atomide.com>
      829a7da0
  3. 06 11月, 2015 1 次提交
    • A
      uaccess: reimplement probe_kernel_address() using probe_kernel_read() · 0ab32b6f
      Andrew Morton 提交于
      probe_kernel_address() is basically the same as the (later added)
      probe_kernel_read().
      
      The return value on EFAULT is a bit different: probe_kernel_address()
      returns number-of-bytes-not-copied whereas probe_kernel_read() returns
      -EFAULT.  All callers have been checked, none cared.
      
      probe_kernel_read() can be overridden by the architecture whereas
      probe_kernel_address() cannot.  parisc, blackfin and um do this, to insert
      additional checking.  Hence this patch possibly fixes obscure bugs,
      although there are only two probe_kernel_address() callsites outside
      arch/.
      
      My first attempt involved removing probe_kernel_address() entirely and
      converting all callsites to use probe_kernel_read() directly, but that got
      tiresome.
      
      This patch shrinks mm/slab_common.o by 218 bytes.  For a single
      probe_kernel_address() callsite.
      
      Cc: Steven Miao <realmz6@gmail.com>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: Richard Weinberger <richard@nod.at>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Ingo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0ab32b6f
  4. 03 11月, 2015 4 次提交
  5. 02 11月, 2015 2 次提交
  6. 29 10月, 2015 1 次提交
  7. 28 10月, 2015 2 次提交
  8. 27 10月, 2015 2 次提交
  9. 26 10月, 2015 6 次提交
  10. 24 10月, 2015 1 次提交
  11. 23 10月, 2015 18 次提交