- 01 6月, 2018 4 次提交
-
-
由 Marc Zyngier 提交于
On a system where firmware can dynamically change the state of the mitigation, the CPU will always come up with the mitigation enabled, including when coming back from suspend. If the user has requested "no mitigation" via a command line option, let's enforce it by calling into the firmware again to disable it. Similarily, for a resume from hibernate, the mitigation could have been disabled by the boot kernel. Let's ensure that it is set back on in that case. Acked-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
We're about to need the mitigation state in various parts of the kernel in order to do the right thing for userspace and guests. Let's expose an accessor that will let other subsystems know about the state. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
On a system where the firmware implements ARCH_WORKAROUND_2, it may be useful to either permanently enable or disable the workaround for cases where the user decides that they'd rather not get a trap overhead, and keep the mitigation permanently on or off instead of switching it on exception entry/exit. In any case, default to the mitigation being enabled. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
As for Spectre variant-2, we rely on SMCCC 1.1 to provide the discovery mechanism for detecting the SSBD mitigation. A new capability is also allocated for that purpose, and a config option. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 18 5月, 2018 4 次提交
-
-
由 Dave Martin 提交于
Writes to ZCR_EL1 are self-synchronising, and so may be expensive in typical implementations. This patch adopts the approach used for costly system register writes elsewhere in the kernel: the system register write is suppressed if it would not change the stored value. Since the common case will be that of switching between tasks that use the same vector length as one another, prediction hit rates on the conditional branch should be reasonably good, with lower expected amortised cost than the unconditional execution of a heavyweight self-synchronising instruction. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
Now that we have an accurate view of the physical topology we need to represent it correctly to the scheduler. Generally MC should equal the LLC in the system, but there are a number of special cases that need to be dealt with. In the case of NUMA in socket, we need to assure that the sched domain we build for the MC layer isn't larger than the DIE above it. Similarly for LLC's that might exist in cross socket interconnect or directory hardware we need to assure that MC is shrunk to the socket or NUMA node. This patch builds a sibling mask for the LLC, and then picks the smallest of LLC, socket siblings, or NUMA node siblings, which gives us the behavior described above. This is ever so slightly different than the similar alternative where we look for a cache layer less than or equal to the socket/NUMA siblings. The logic to pick the MC layer affects all arm64 machines, but only changes the behavior for DT/MPIDR systems if the NUMA domain is smaller than the core siblings (generally set to the cluster). Potentially this fixes a possible bug in DT systems, but really it only affects ACPI systems where the core siblings is correctly set to the socket siblings. Thus all currently available ACPI systems should have MC equal to LLC, including the NUMA in socket machines where the LLC is partitioned between the NUMA nodes. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
The cluster concept isn't architecturally defined for arm64. Lets match the name of the arm64 topology field to the kernel macro that uses it. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
Its helpful to be able to lookup the acpi_processor_id associated with a logical cpu. Provide an arm64 helper to do this. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 16 5月, 2018 2 次提交
-
-
由 Will Deacon 提交于
When waiting for a cacheline to change state in cmpwait, we may immediately wake-up the first time around the outer loop if the event register was already set (for example, because of the event stream). Avoid these spurious wakeups by explicitly clearing the event register before loading the cacheline and setting the exclusive monitor. Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Vincenzo Frascino 提交于
"make includecheck" detected few duplicated includes in arch/arm64. This patch removes the double inclusions. Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 15 5月, 2018 1 次提交
-
-
由 Catalin Marinas 提交于
This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves the fallback in cache_line_size() from L1_CACHE_BYTES to this constant. In addition, it warns (and taints) if the CWG is larger than ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA. Cc: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 11 5月, 2018 1 次提交
-
-
由 Catalin Marinas 提交于
This reverts commit 97303480. Commit 97303480 ("arm64: Increase the max granular size") increased the cache line size to 128 to match Cavium ThunderX, apparently for some performance benefit which could not be confirmed. This change, however, has an impact on the network packet allocation in certain circumstances, requiring slightly over a 4K page with a significant performance degradation. The patch reverts L1_CACHE_SHIFT back to 6 (64-byte cache line). Cc: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 04 5月, 2018 1 次提交
-
-
由 James Morse 提交于
A typo in kvm_vcpu_set_be()'s call: | vcpu_write_sys_reg(vcpu, SCTLR_EL1, sctlr) causes us to use the 32bit register value as an index into the sys_reg[] array, and sail off the end of the linear map when we try to bring up big-endian secondaries. | Unable to handle kernel paging request at virtual address ffff80098b982c00 | Mem abort info: | ESR = 0x96000045 | Exception class = DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | Data abort info: | ISV = 0, ISS = 0x00000045 | CM = 0, WnR = 1 | swapper pgtable: 4k pages, 48-bit VAs, pgdp = 000000002ea0571a | [ffff80098b982c00] pgd=00000009ffff8803, pud=0000000000000000 | Internal error: Oops: 96000045 [#1] PREEMPT SMP | Modules linked in: | CPU: 2 PID: 1561 Comm: kvm-vcpu-0 Not tainted 4.17.0-rc3-00001-ga912e2261ca6-dirty #1323 | Hardware name: ARM Juno development board (r1) (DT) | pstate: 60000005 (nZCv daif -PAN -UAO) | pc : vcpu_write_sys_reg+0x50/0x134 | lr : vcpu_write_sys_reg+0x50/0x134 | Process kvm-vcpu-0 (pid: 1561, stack limit = 0x000000006df4728b) | Call trace: | vcpu_write_sys_reg+0x50/0x134 | kvm_psci_vcpu_on+0x14c/0x150 | kvm_psci_0_2_call+0x244/0x2a4 | kvm_hvc_call_handler+0x1cc/0x258 | handle_hvc+0x20/0x3c | handle_exit+0x130/0x1ec | kvm_arch_vcpu_ioctl_run+0x340/0x614 | kvm_vcpu_ioctl+0x4d0/0x840 | do_vfs_ioctl+0xc8/0x8d0 | ksys_ioctl+0x78/0xa8 | sys_ioctl+0xc/0x18 | el0_svc_naked+0x30/0x34 | Code: 73620291 604d00b0 00201891 1ab10194 (957a33f8) |---[ end trace 4b4a4f9628596602 ]--- Fix the order of the arguments. Fixes: 8d404c4c ("KVM: arm64: Rewrite system register accessors to read/write functions") CC: Christoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 4月, 2018 1 次提交
-
-
由 Kim Phillips 提交于
Commit a257e025 ("arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419") introduced a function whose name ends with "_veneer". This clashes with commit bd8b22d2 ("Kbuild: kallsyms: ignore veneers emitted by the ARM linker"), which removes symbols ending in "_veneer" from kallsyms. The problem was manifested as 'perf test -vvvvv vmlinux' failed, correctly claiming the symbol 'module_emit_adrp_veneer' was present in vmlinux, but not in kallsyms. ... ERR : 0xffff00000809aa58: module_emit_adrp_veneer not on kallsyms ... test child finished with -1 ---- end ---- vmlinux symtab matches kallsyms: FAILED! Fix the problem by renaming module_emit_adrp_veneer to module_emit_veneer_for_adrp. Now the test passes. Fixes: a257e025 ("arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419") Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Michal Marek <mmarek@suse.cz> Signed-off-by: NKim Phillips <kim.phillips@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 24 4月, 2018 1 次提交
-
-
由 Shaokun Zhang 提交于
The addr parameter isn't used for anything. Let's simplify and get rid of it, like arm. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NShaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 20 4月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1 or 1.0 to a guest, defaulting to the latest version of the PSCI implementation that is compatible with the requested version. This is no different from doing a firmware upgrade on KVM. But in order to give a chance to hypothetical badly implemented guests that would have a fit by discovering something other than PSCI 0.2, let's provide a new API that allows userspace to pick one particular version of the API. This is implemented as a new class of "firmware" registers, where we expose the PSCI version. This allows the PSCI version to be save/restored as part of a guest migration, and also set to any supported version if the guest requires it. Cc: stable@vger.kernel.org #4.16 Reviewed-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 12 4月, 2018 5 次提交
-
-
由 Ard Biesheuvel 提交于
Add support macros to conditionally yield the NEON (and thus the CPU) that may be called from the assembler code. In some cases, yielding the NEON involves saving and restoring a non trivial amount of context (especially in the CRC folding algorithms), and so the macro is split into three, and the code in between is only executed when the yield path is taken, allowing the context to be preserved. The third macro takes an optional label argument that marks the resume path after a yield has been performed. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
We are going to add code to all the NEON crypto routines that will turn them into non-leaf functions, so we need to manage the stack frames. To make this less tedious and error prone, add some macros that take the number of callee saved registers to preserve and the extra size to allocate in the stack frame (for locals) and emit the ldp/stp sequences. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Shanker Donthineni 提交于
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead of Silicon provider service ID 0xC2001700. Cc: <stable@vger.kernel.org> # 4.14+ Signed-off-by: NShanker Donthineni <shankerd@codeaurora.org> [maz: reworked errata framework integration] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Matthew Wilcox 提交于
ARM64 doesn't walk the VMA tree in its flush_dcache_page() implementation, so has no need to take the tree_lock. Link: http://lkml.kernel.org/r/20180313132639.17387-4-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Reviewed-by: NWill Deacon <will.deacon@arm.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Masahiro Yamada 提交于
ARM, ARM64 and UniCore32 duplicate the definition of UL(): #define UL(x) _AC(x, UL) This is not actually arch-specific, so it will be useful to move it to a common header. Currently, we only have the uapi variant for linux/const.h, so I am creating include/linux/const.h. I also added _UL(), _ULL() and ULL() because _AC() is mostly used in the form either _AC(..., UL) or _AC(..., ULL). I expect they will be replaced in follow-up cleanups. The underscore-prefixed ones should be used for exported headers. Link: http://lkml.kernel.org/r/1519301715-31798-4-git-send-email-yamada.masahiro@socionext.comSigned-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Acked-by: NGuan Xuetao <gxt@mprc.pku.edu.cn> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NRussell King <rmk+kernel@armlinux.org.uk> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 3月, 2018 4 次提交
-
-
由 Dave Martin 提交于
When the hardend usercopy support was added for arm64, it was concluded that all cases of usercopy into and out of thread_struct were statically sized and so didn't require explicit whitelisting of the appropriate fields in thread_struct. Testing with usercopy hardening enabled has revealed that this is not the case for certain ptrace regset manipulation calls on arm64. This occurs because the sizes of usercopies associated with the regset API are dynamic by construction, and because arm64 does not always stage such copies via the stack: indeed the regset API is designed to avoid the need for that by adding some bounds checking. This is currently believed to affect only the fpsimd and TLS registers. Because the whitelisted fields in thread_struct must be contiguous, this patch groups them together in a nested struct. It is also necessary to be able to determine the location and size of that struct, so rather than making the struct anonymous (which would save on edits elsewhere) or adding an anonymous union containing named and unnamed instances of the same struct (gross), this patch gives the struct a name and makes the necessary edits to code that references it (noisy but simple). Care is needed to ensure that the new struct does not contain padding (which the usercopy hardening would fail to protect). For this reason, the presence of tp2_value is made unconditional, since a padding field would be needed there in any case. This pads up to the 16-byte alignment required by struct user_fpsimd_state. Acked-by: NKees Cook <keescook@chromium.org> Reported-by: NMark Rutland <mark.rutland@arm.com> Fixes: 9e8084d3 ("arm64: Implement thread_struct whitelist for hardened usercopy") Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Dave Martin 提交于
In preparation for using a common representation of the FPSIMD state for tasks and KVM vcpus, this patch separates out the "cpu" field that is used to track the cpu on which the state was most recently loaded. This will allow common code to operate on task and vcpu contexts without requiring the cpu field to be stored at the same offset from the FPSIMD register data in both cases. This should avoid the need for messing with the definition of those parts of struct vcpu_arch that are exposed in the KVM user ABI. The resulting change is also convenient for grouping and defining the set of thread_struct fields that are supposed to be accessible to copy_{to,from}_user(), which includes user_fpsimd_state but should exclude the cpu field. This patch does not amend the usercopy whitelist to match: that will be addressed in a subsequent patch. Signed-off-by: NDave Martin <Dave.Martin@arm.com> [will: inline fpsimd_flush_state for now] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Philip Elcan 提交于
Several of the bits of the TLBI register operand are RES0 per the ARM ARM, so TLBI operations should avoid writing non-zero values to these bits. This patch adds a macro __TLBI_VADDR(addr, asid) that creates the operand register in the correct format and honors the RES0 bits. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NPhilip Elcan <pelcan@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Marc Zyngier 提交于
Creates far too many conflicts with arm64/for-next/core, to be resent post -rc1. This reverts commit f9f5dc19. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 27 3月, 2018 15 次提交
-
-
由 Will Deacon 提交于
We need linux/compiler.h for unreachable(), so #include it here. Reported-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
We want to avoid pulling linux/preempt.h into cmpxchg.h, since that can introduce a circular dependency on linux/bitops.h. linux/preempt.h is only needed by the per-cpu cmpxchg implementation, which is better off alongside the per-cpu xchg implementation in percpu.h, so move it there and add the missing #include. Reported-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
Having asm/cmpxchg.h pull in linux/bug.h is problematic because this ends up pulling in the atomic bitops which themselves may be built on top of atomic.h and cmpxchg.h. Instead, just include build_bug.h for the definition of BUILD_BUG. Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
When the LL/SC atomics are moved out-of-line, they are annotated as notrace and exported to modules. Ensure we pull in the relevant include files so that these macros are defined when we need them. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
fpsimd.h uses the __init annotation, so pull in linux/init.h Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
This reverts commit 1f85b42a. The internal dma-direct.h API has changed in -next, which collides with us trying to use it to manage non-coherent DMA devices on systems with unreasonably large cache writeback granules. This isn't at all trivial to resolve, so revert our changes for now and we can revisit this after the merge window. Effectively, this just restores our behaviour back to that of 4.16. Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
We enable hardware DBM bit in a capable CPU, very early in the boot via __cpu_setup. This doesn't give us a flexibility of optionally disable the feature, as the clearing the bit is a bit costly as the TLB can cache the settings. Instead, we delay enabling the feature until the CPU is brought up into the kernel. We use the feature capability mechanism to handle it. The hardware DBM is a non-conflicting feature. i.e, the kernel can safely run with a mix of CPUs with some using the feature and the others don't. So, it is safe for a late CPU to have this capability and enable it, even if the active CPUs don't. To get this handled properly by the infrastructure, we unconditionally set the capability and only enable it on CPUs which really have the feature. Also, we print the feature detection from the "matches" call back to make sure we don't mislead the user when none of the CPUs could use the feature. Cc: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Update the MIDR encodings for the Cortex-A55 and Cortex-A35 Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Some capabilities have different criteria for detection and associated actions based on the matching criteria, even though they all share the same capability bit. So far we have used multiple entries with the same capability bit to handle this. This is prone to errors, as the cpu_enable is invoked for each entry, irrespective of whether the detection rule applies to the CPU or not. And also this complicates other helpers, e.g, __this_cpu_has_cap. This patch adds a wrapper entry to cover all the possible variations of a capability by maintaining list of matches + cpu_enable callbacks. To avoid complicating the prototypes for the "matches()", we use arm64_cpu_capabilities maintain the list and we ignore all the other fields except the matches & cpu_enable. This ensures : 1) The capabilitiy is set when at least one of the entry detects 2) Action is only taken for the entries that "matches". This avoids explicit checks in the cpu_enable() take some action. The only constraint here is that, all the entries should have the same "type" (i.e, scope and conflict rules). If a cpu_enable() method is associated with multiple matches for a single capability, care should be taken that either the match criteria are mutually exclusive, or that the method is robust against being called multiple times. This also reverts the changes introduced by commit 67948af4 ("arm64: capabilities: Handle duplicate entries for a capability"). Cc: Robin Murphy <robin.murphy@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Add helpers for detecting an errata on list of midr ranges of affected CPUs, with the same work around. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Add helpers for checking if the given CPU midr falls in a range of variants/revisions for a given model. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
We expect all CPUs to be running at the same EL inside the kernel with or without VHE enabled and we have strict checks to ensure that any mismatch triggers a kernel panic. If VHE is enabled, we use the feature based on the boot CPU and all other CPUs should follow. This makes it a perfect candidate for a capability based on the boot CPU, which should be matched by all the CPUs (both when is ON and OFF). This saves us some not-so-pretty hooks and special code, just for verifying the conflict. The patch also makes the VHE capability entry depend on CONFIG_ARM64_VHE. Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
The kernel detects and uses some of the features based on the boot CPU and expects that all the following CPUs conform to it. e.g, with VHE and the boot CPU running at EL2, the kernel decides to keep the kernel running at EL2. If another CPU is brought up without this capability, we use custom hooks (via check_early_cpu_features()) to handle it. To handle such capabilities add support for detecting and enabling capabilities based on the boot CPU. A bit is added to indicate if the capability should be detected early on the boot CPU. The infrastructure then ensures that such capabilities are probed and "enabled" early on in the boot CPU and, enabled on the subsequent CPUs. Cc: Julien Thierry <julien.thierry@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
KPTI is treated as a system wide feature and is only detected if all the CPUs in the sysetm needs the defense, unless it is forced via kernel command line. This leaves a system with a mix of CPUs with and without the defense vulnerable. Also, if a late CPU needs KPTI but KPTI was not activated at boot time, the CPU is currently allowed to boot, which is a potential security vulnerability. This patch ensures that the KPTI is turned on if at least one CPU detects the capability (i.e, change scope to SCOPE_LOCAL_CPU). Also rejetcs a late CPU, if it requires the defense, when the system hasn't enabled it, Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Now that we have the flexibility of defining system features based on individual CPUs, introduce CPU feature type that can be detected on a local SCOPE and ignores the conflict on late CPUs. This is applicable for ARM64_HAS_NO_HW_PREFETCH, where it is fine for the system to have CPUs without hardware prefetch turning up later. We only suffer a performance penalty, nothing fatal. Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-