- 25 5月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
There are several places where we use KM_SLEEP allocation contexts and use the fact that they are called from transaction context to add KM_NOFS where appropriate. Unfortunately, there are several places where the code makes this assumption but can be called from outside transaction context but with filesystem locks held. These places need explicit KM_NOFS annotations to avoid lockdep complaining about reclaim contexts. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit ac14876c)
-
- 19 3月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Failed buffer readahead can leave the buffer in the cache marked with an error. Most callers that then issue a subsequent read on the buffer do not zero the b_error field out, and so we may incorectly detect an error during IO completion due to the stale error value left on the buffer. Avoid this problem by zeroing the error before IO submission. This ensures that the only IO errors that are detected those captured from are those captured from bio submission or completion. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit c163f9a1)
-
- 15 3月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Failed buffer readahead can leave the buffer in the cache marked with an error. Most callers that then issue a subsequent read on the buffer do not zero the b_error field out, and so we may incorectly detect an error during IO completion due to the stale error value left on the buffer. Avoid this problem by zeroing the error before IO submission. This ensures that the only IO errors that are detected those captured from are those captured from bio submission or completion. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 08 3月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
When we read a buffer, we might get an error from the underlying block device and not the real data. Hence if we get an IO error, we shouldn't run the verifier but instead just pass the IO error straight through. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 15 2月, 2013 1 次提交
-
-
由 Brian Foster 提交于
The trylock log force invoked via xfs_buf_item_push() can attempt to acquire xa_lock, thus leading to a recursion bug when called with xa_lock held. This log force was originally added to xfs_buf_trylock() to address xfsaild stalls due to pinned and stale buffers. Since the addition of this behavior, the log item pushing code had been reworked to detect and track pinned items to inform xfsaild to issue a log force itself when necessary. As such, the log force on trylock failure is redundant and safe to remove. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 29 1月, 2013 2 次提交
-
-
由 Dave Chinner 提交于
When the new inode verify in xfs_iread() fails, the create transaction is aborted and a shutdown occurs. The subsequent unmount then hangs in xfs_wait_buftarg() on a buffer that has an elevated hold count. Debug showed that it was an AGI buffer getting stuck: [ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck The trace of this buffer leading up to the shutdown (trimmed for brevity) looks like: xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1 xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1 xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1 xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1 xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock And that is the AGI buffer from cold cache read into memory to transaction abort. You can see at transaction abort the bli is dirty and only has a single reference. The item is not pinned, and it's not in the AIL. Hence the only reference to it is this transaction. The problem is that the xfs_buf_item_unlock() call is dropping the last reference to the xfs_buf_log_item attached to the buffer (which holds a reference to the buffer), but it is not freeing the xfs_buf_log_item. Hence nothing will ever release the buffer, and the unmount hangs waiting for this reference to go away. The fix is simple - xfs_buf_item_unlock needs to detect the last reference going away in this case and free the xfs_buf_log_item to release the reference it holds on the buffer. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
When _xfs_buf_find is passed an out of range address, it will fail to find a relevant struct xfs_perag and oops with a null dereference. This can happen when trying to walk a filesystem with a metadata inode that has a partially corrupted extent map (i.e. the block number returned is corrupt, but is otherwise intact) and we try to read from the corrupted block address. In this case, just fail the lookup. If it is readahead being issued, it will simply not be done, but if it is real read that fails we will get an error being reported. Ideally this case should result in an EFSCORRUPTED error being reported, but we cannot return an error through xfs_buf_read() or xfs_buf_get() so this lookup failure may result in ENOMEM or EIO errors being reported instead. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 26 1月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
When the new inode verify in xfs_iread() fails, the create transaction is aborted and a shutdown occurs. The subsequent unmount then hangs in xfs_wait_buftarg() on a buffer that has an elevated hold count. Debug showed that it was an AGI buffer getting stuck: [ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck The trace of this buffer leading up to the shutdown (trimmed for brevity) looks like: xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1 xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1 xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1 xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1 xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock And that is the AGI buffer from cold cache read into memory to transaction abort. You can see at transaction abort the bli is dirty and only has a single reference. The item is not pinned, and it's not in the AIL. Hence the only reference to it is this transaction. The problem is that the xfs_buf_item_unlock() call is dropping the last reference to the xfs_buf_log_item attached to the buffer (which holds a reference to the buffer), but it is not freeing the xfs_buf_log_item. Hence nothing will ever release the buffer, and the unmount hangs waiting for this reference to go away. The fix is simple - xfs_buf_item_unlock needs to detect the last reference going away in this case and free the xfs_buf_log_item to release the reference it holds on the buffer. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 25 1月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
When _xfs_buf_find is passed an out of range address, it will fail to find a relevant struct xfs_perag and oops with a null dereference. This can happen when trying to walk a filesystem with a metadata inode that has a partially corrupted extent map (i.e. the block number returned is corrupt, but is otherwise intact) and we try to read from the corrupted block address. In this case, just fail the lookup. If it is readahead being issued, it will simply not be done, but if it is real read that fails we will get an error being reported. Ideally this case should result in an EFSCORRUPTED error being reported, but we cannot return an error through xfs_buf_read() or xfs_buf_get() so this lookup failure may result in ENOMEM or EIO errors being reported instead. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 17 1月, 2013 1 次提交
-
-
由 Mark Tinguely 提交于
Commits starting at 77c1a08f introduced a multiple segment support to xfs_buf. xfs_trans_buf_item_match() could not find a multi-segment buffer in the transaction because it was looking at the single segment block number rather than the multi-segment b_maps[0].bm.bn. This results on a recursive buffer lock that can never be satisfied. This patch: 1) Changed the remaining b_map accesses to be b_maps[0] accesses. 2) Renames the single segment b_map structure to __b_map to avoid future confusion. Signed-off-by: NMark Tinguely <tinguely@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 18 12月, 2012 1 次提交
-
-
由 Mark Tinguely 提交于
Commits starting at 77c1a08f introduced a multiple segment support to xfs_buf. xfs_trans_buf_item_match() could not find a multi-segment buffer in the transaction because it was looking at the single segment block number rather than the multi-segment b_maps[0].bm.bn. This results on a recursive buffer lock that can never be satisfied. This patch: 1) Changed the remaining b_map accesses to be b_maps[0] accesses. 2) Renames the single segment b_map structure to __b_map to avoid future confusion. Signed-off-by: NMark Tinguely <tinguely@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 17 11月, 2012 1 次提交
-
-
由 Dave Chinner 提交于
Error handling in xfs_buf_ioapply_map() does not handle IO reference counts correctly. We increment the b_io_remaining count before building the bio, but then fail to decrement it in the failure case. This leads to the buffer never running IO completion and releasing the reference that the IO holds, so at unmount we can leak the buffer. This leak is captured by this assert failure during unmount: XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 273 This is not a new bug - the b_io_remaining accounting has had this problem for a long, long time - it's just very hard to get a zero length bio being built by this code... Further, the buffer IO error can be overwritten on a multi-segment buffer by subsequent bio completions for partial sections of the buffer. Hence we should only set the buffer error status if the buffer is not already carrying an error status. This ensures that a partial IO error on a multi-segment buffer will not be lost. This part of the problem is a regression, however. cc: <stable@vger.kernel.org> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 16 11月, 2012 4 次提交
-
-
由 Dave Chinner 提交于
To separate the verifiers from iodone functions and associate read and write verifiers at the same time, introduce a buffer verifier operations structure to the xfs_buf. This avoids the need for assigning the write verifier, clearing the iodone function and re-running ioend processing in the read verifier, and gets rid of the nasty "b_pre_io" name for the write verifier function pointer. If we ever need to, it will also be easier to add further content specific callbacks to a buffer with an ops structure in place. We also avoid needing to export verifier functions, instead we can simply export the ops structures for those that are needed outside the function they are defined in. This patch also fixes a directory block readahead verifier issue it exposed. This patch also adds ops callbacks to the inode/alloc btree blocks initialised by growfs. These will need more work before they will work with CRCs. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Add a callback to the buffer write path to enable verification of the buffer and CRC calculation prior to issuing the write to the underlying storage. If the callback function detects some kind of failure or error condition, it must mark the buffer with an error so that the caller can take appropriate action. In the case of xfs_buf_ioapply(), a corrupt metadta buffer willt rigger a shutdown of the filesystem, because something is clearly wrong and we can't allow corrupt metadata to be written to disk. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
With verification being done as an IO completion callback, different errors can be returned from a read. Uncached reads only return a buffer or NULL on failure, which means the verification error cannot be returned to the caller. Split the error handling for these reads into two - a failure to get a buffer will still return NULL, but a read error will return a referenced buffer with b_error set rather than NULL. The caller is responsible for checking the error state of the buffer returned. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Add a verifier function callback capability to the buffer read interfaces. This will be used by the callers to supply a function that verifies the contents of the buffer when it is read from disk. This patch does not provide callback functions, but simply modifies the interfaces to allow them to be called. The reason for adding this to the read interfaces is that it is very difficult to tell fom the outside is a buffer was just read from disk or whether we just pulled it out of cache. Supplying a callbck allows the buffer cache to use it's internal knowledge of the buffer to execute it only when the buffer is read from disk. It is intended that the verifier functions will mark the buffer with an EFSCORRUPTED error when verification fails. This allows the reading context to distinguish a verification error from an IO error, and potentially take further actions on the buffer (e.g. attempt repair) based on the error reported. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 14 11月, 2012 1 次提交
-
-
由 Dave Chinner 提交于
Error handling in xfs_buf_ioapply_map() does not handle IO reference counts correctly. We increment the b_io_remaining count before building the bio, but then fail to decrement it in the failure case. This leads to the buffer never running IO completion and releasing the reference that the IO holds, so at unmount we can leak the buffer. This leak is captured by this assert failure during unmount: XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 273 This is not a new bug - the b_io_remaining accounting has had this problem for a long, long time - it's just very hard to get a zero length bio being built by this code... Further, the buffer IO error can be overwritten on a multi-segment buffer by subsequent bio completions for partial sections of the buffer. Hence we should only set the buffer error status if the buffer is not already carrying an error status. This ensures that a partial IO error on a multi-segment buffer will not be lost. This part of the problem is a regression, however. cc: <stable@vger.kernel.org> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 30 8月, 2012 1 次提交
-
-
由 Carlos Maiolino 提交于
While xfs_buftarg_shrink() is freeing buffers from the dispose list (filled with buffers from lru list), there is a possibility to have xfs_buf_stale() racing with it, and removing buffers from dispose list before xfs_buftarg_shrink() does it. This happens because xfs_buftarg_shrink() handle the dispose list without locking and the test condition in xfs_buf_stale() checks for the buffer being in *any* list: if (!list_empty(&bp->b_lru)) If the buffer happens to be on dispose list, this causes the buffer counter of lru list (btp->bt_lru_nr) to be decremented twice (once in xfs_buftarg_shrink() and another in xfs_buf_stale()) causing a wrong account usage of the lru list. This may cause xfs_buftarg_shrink() to return a wrong value to the memory shrinker shrink_slab(), and such account error may also cause an underflowed value to be returned; since the counter is lower than the current number of items in the lru list, a decrement may happen when the counter is 0, causing an underflow on the counter. The fix uses a new flag field (and a new buffer flag) to serialize buffer handling during the shrink process. The new flag field has been designed to use btp->bt_lru_lock/unlock instead of xfs_buf_lock/unlock mechanism. dchinner, sandeen, aquini and aris also deserve credits for this. Signed-off-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 25 8月, 2012 1 次提交
-
-
由 Carlos Maiolino 提交于
While xfs_buftarg_shrink() is freeing buffers from the dispose list (filled with buffers from lru list), there is a possibility to have xfs_buf_stale() racing with it, and removing buffers from dispose list before xfs_buftarg_shrink() does it. This happens because xfs_buftarg_shrink() handle the dispose list without locking and the test condition in xfs_buf_stale() checks for the buffer being in *any* list: if (!list_empty(&bp->b_lru)) If the buffer happens to be on dispose list, this causes the buffer counter of lru list (btp->bt_lru_nr) to be decremented twice (once in xfs_buftarg_shrink() and another in xfs_buf_stale()) causing a wrong account usage of the lru list. This may cause xfs_buftarg_shrink() to return a wrong value to the memory shrinker shrink_slab(), and such account error may also cause an underflowed value to be returned; since the counter is lower than the current number of items in the lru list, a decrement may happen when the counter is 0, causing an underflow on the counter. The fix uses a new flag field (and a new buffer flag) to serialize buffer handling during the shrink process. The new flag field has been designed to use btp->bt_lru_lock/unlock instead of xfs_buf_lock/unlock mechanism. dchinner, sandeen, aquini and aris also deserve credits for this. Signed-off-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 14 7月, 2012 4 次提交
-
-
由 Christoph Hellwig 提交于
xfs_bdstrat_cb only adds a check for a shutdown filesystem over xfs_buf_iorequest, but xfs_buf_iodone_callbacks just checked for a shut down filesystem a little earlier. In addition the shutdown handling in xfs_bdstrat_cb is not very suitable for this caller. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Christoph Hellwig 提交于
If the b_iodone handler is run in calling context in xfs_buf_iorequest we can run into a recursion where xfs_buf_iodone_callbacks keeps calling back into xfs_buf_iorequest because an I/O error happened, which keeps calling back into xfs_buf_iorequest. This chain will usually not take long because the filesystem gets shut down because of log I/O errors, but even over a short time it can cause stack overflows if run on the same context. As a short term workaround make sure we always call the iodone handler in workqueue context. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Christoph Hellwig 提交于
xfs_bdstrat_cb only adds a check for a shutdown filesystem over xfs_buf_iorequest, but xfs_buf_iodone_callbacks just checked for a shut down filesystem a little earlier. In addition the shutdown handling in xfs_bdstrat_cb is not very suitable for this caller. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Christoph Hellwig 提交于
If the b_iodone handler is run in calling context in xfs_buf_iorequest we can run into a recursion where xfs_buf_iodone_callbacks keeps calling back into xfs_buf_iorequest because an I/O error happened, which keeps calling back into xfs_buf_iorequest. This chain will usually not take long because the filesystem gets shut down because of log I/O errors, but even over a short time it can cause stack overflows if run on the same context. As a short term workaround make sure we always call the iodone handler in workqueue context. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 02 7月, 2012 3 次提交
-
-
由 Dave Chinner 提交于
With the internal interfaces supporting discontiguous buffer maps, add external lookup, read and get interfaces so they can start to be used. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
While the external interface currently uses separate blockno/length variables, we need to move internal interfaces to passing and parsing vector maps. This will then allow us to add external interfaces to support discontiguous buffer maps as the internal code will already support them. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
To support discontiguous buffers in the buffer cache, we need to separate the cache index variables from the I/O map. While this is currently a 1:1 mapping, discontiguous buffer support will break this relationship. However, for caching purposes, we can still treat them the same as a contiguous buffer - the block number of the first block and the length of the buffer - as that is still a unique representation. Also, the only way we will ever access the discontiguous regions of buffers is via bulding the complete buffer in the first place, so using the initial block number and entire buffer length is a sane way to index the buffers. Add a block mapping vector construct to the xfs_buf and use it in the places where we are doing IO instead of the current b_bn/b_length variables. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 22 6月, 2012 2 次提交
-
-
由 Jan Kara 提交于
Commit de1cbee4 which removed b_file_offset in favor of b_bn introduced a bug causing xfs_buf_allocate_memory() to overestimate the number of necessary pages. The problem is that xfs_buf_alloc() sets b_bn to -1 and thus effectively every buffer is straddling a page boundary which causes xfs_buf_allocate_memory() to allocate two pages and use vmalloc() for access which is unnecessary. Dave says xfs_buf_alloc() doesn't need to set b_bn to -1 anymore since the buffer is inserted into the cache only after being fully initialized now. So just make xfs_buf_alloc() fill in proper block number from the beginning. CC: David Chinner <dchinner@redhat.com> Signed-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Jan Kara 提交于
Commit de1cbee4 which removed b_file_offset in favor of b_bn introduced a bug causing xfs_buf_allocate_memory() to overestimate the number of necessary pages. The problem is that xfs_buf_alloc() sets b_bn to -1 and thus effectively every buffer is straddling a page boundary which causes xfs_buf_allocate_memory() to allocate two pages and use vmalloc() for access which is unnecessary. Dave says xfs_buf_alloc() doesn't need to set b_bn to -1 anymore since the buffer is inserted into the cache only after being fully initialized now. So just make xfs_buf_alloc() fill in proper block number from the beginning. CC: David Chinner <dchinner@redhat.com> Signed-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 15 5月, 2012 12 次提交
-
-
由 Dave Chinner 提交于
Rather than specifying XBF_MAPPED for almost all buffers, introduce XBF_UNMAPPED for the couple of users that use unmapped buffers. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Recent event tracing during a debugging session showed that flags that define the IO type for a buffer are leaking into the flags on the buffer incorrectly. Fix the flag exclusion mask in xfs_buf_alloc() to avoid problems that may be caused by such leakage. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Untangle the header file includes a bit by moving the definition of xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include xfs_ag.h. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Just about all callers of xfs_buf_read() and xfs_buf_get() use XBF_DONTBLOCK. This is used to make memory allocation use GFP_NOFS rather than GFP_KERNEL to avoid recursion through memory reclaim back into the filesystem. All the blocking get calls in growfs occur inside a transaction, even though they are no part of the transaction, so all allocation will be GFP_NOFS due to the task flag PF_TRANS being set. The blocking read calls occur during log recovery, so they will probably be unaffected by converting to GFP_NOFS allocations. Hence make XBF_DONTBLOCK behaviour always occur for buffers and kill the flag. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Buffers are always returned locked from the lookup routines. Hence we don't need to tell the lookup routines to return locked buffers, on to try and lock them. Remove XBF_LOCK from all the callers and from internal buffer cache usage. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
xfs_buf_btoc and friends are simple macros that do basic block to page index conversion and vice versa. These aren't widely used, and we use open coded masking and shifting everywhere else. Hence remove the macros and open code the work they do. Also, use of PAGE_CACHE_{SIZE|SHIFT|MASK} for these macros is now incorrect - we are using pages directly and not the page cache, so use PAGE_{SIZE|MASK|SHIFT} instead. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Now that we pass block counts everywhere, and index buffers by block number and length in units of blocks, convert the desired IO size into block counts rather than bytes. Convert the code to use block counts, and those that need byte counts get converted at the time of use. Rename the b_desired_count variable to something closer to it's purpose - b_io_length - as it is only used to specify the length of an IO for a subset of the buffer. The only time this is used is for log IO - both writing iclogs and during log recovery. In all other cases, the b_io_length matches b_length, and hence a lot of code confuses the two. e.g. the buf item code uses the io count exclusively when it should be using the buffer length. Fix these apprpriately as they are found. Also, remove the XFS_BUF_{SET_}COUNT() macros that are just wrappers around the desired IO length. They only serve to make the code shouty loud, don't actually add any real value, and are often used incorrectly. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Now that we pass block counts everywhere, and index buffers by block number, track the length of the buffer in units of blocks rather than bytes. Convert the code to use block counts, and those that need byte counts get converted at the time of use. Also, remove the XFS_BUF_{SET_}SIZE() macros that are just wrappers around the buffer length. They only serve to make the code shouty loud and don't actually add any real value. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Seeing as we pass block numbers around everywhere in the buffer cache now, it makes no sense to index everything by byte offset. Replace all the byte offset indexing with block number based indexing, and replace all uses of the byte offset with direct conversion from the block index. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
The xfs_buf_get/read API is not consistent in the units it uses, and does not use appropriate or consistent units/types for the variables. Convert the API to use disk addresses and block counts for all buffer get and read calls. Use consistent naming for all the functions and their declarations, and convert the internal functions to use disk addresses and block counts to avoid need to convert them from one type to another and back again. Fix all the callers to use disk addresses and block counts. In many cases, this removes an additional conversion from the function call as the callers already have a block count. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
To replace the alloc/memset pair. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Because we no longer use the page cache for buffering, there is no direct block number to page offset relationship anymore. xfs_buf_get_pages is still setting up b_offset as if there was some relationship, and that is leading to incorrectly setting up *uncached* buffers that don't overwrite b_offset once they've had pages allocated. For cached buffers, the first block of the buffer is always at offset zero into the allocated memory. This is true for sub-page sized buffers, as well as for multiple-page buffers. For uncached buffers, b_offset is only non-zero when we are associating specific memory to the buffers, and that is set correctly by the code setting up the buffer. Hence remove the setting of b_offset in xfs_buf_get_pages, because it is now always the wrong thing to do. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-