1. 19 5月, 2018 1 次提交
  2. 20 4月, 2018 1 次提交
  3. 12 4月, 2018 1 次提交
    • D
      x86/mm: Do not auto-massage page protections · fb43d6cb
      Dave Hansen 提交于
      A PTE is constructed from a physical address and a pgprotval_t.
      __PAGE_KERNEL, for instance, is a pgprot_t and must be converted
      into a pgprotval_t before it can be used to create a PTE.  This is
      done implicitly within functions like pfn_pte() by massage_pgprot().
      
      However, this makes it very challenging to set bits (and keep them
      set) if your bit is being filtered out by massage_pgprot().
      
      This moves the bit filtering out of pfn_pte() and friends.  For
      users of PAGE_KERNEL*, filtering will be done automatically inside
      those macros but for users of __PAGE_KERNEL*, they need to do their
      own filtering now.
      
      Note that we also just move pfn_pte/pmd/pud() over to check_pgprot()
      instead of massage_pgprot().  This way, we still *look* for
      unsupported bits and properly warn about them if we find them.  This
      might happen if an unfiltered __PAGE_KERNEL* value was passed in,
      for instance.
      
      - printk format warning fix from: Arnd Bergmann <arnd@arndb.de>
      - boot crash fix from:            Tom Lendacky <thomas.lendacky@amd.com>
      - crash bisected by:              Mike Galbraith <efault@gmx.de>
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reported-and-fixed-by: NArnd Bergmann <arnd@arndb.de>
      Fixed-by: NTom Lendacky <thomas.lendacky@amd.com>
      Bisected-by: NMike Galbraith <efault@gmx.de>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Kees Cook <keescook@google.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Nadav Amit <namit@vmware.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20180406205509.77E1D7F6@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      fb43d6cb
  4. 16 2月, 2018 1 次提交
  5. 07 2月, 2018 1 次提交
    • A
      x86: hibernate: fix swsusp_arch_resume() prototype · 168b6511
      Arnd Bergmann 提交于
      The declaration for swsusp_arch_resume() marks it as 'asmlinkage',
      but the definition in x86-32 does not, and it fails to include
      the header with the declaration.  This leads to a warning when
      building with link-time-optimizations:
      
      kernel/power/power.h:108:23: error: type of 'swsusp_arch_resume' does not match original declaration [-Werror=lto-type-mismatch]
       extern asmlinkage int swsusp_arch_resume(void);
                             ^
      arch/x86/power/hibernate_32.c:148:0: note: 'swsusp_arch_resume' was previously declared here
       int swsusp_arch_resume(void)
      
      This moves the declaration into a globally visible header file
      and fixes up both x86 definitions to match it.
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      168b6511
  6. 03 2月, 2018 1 次提交
    • A
      x86/power: Fix swsusp_arch_resume prototype · 328008a7
      Arnd Bergmann 提交于
      The declaration for swsusp_arch_resume marks it as 'asmlinkage', but the
      definition in x86-32 does not, and it fails to include the header with the
      declaration. This leads to a warning when building with
      link-time-optimizations:
      
      kernel/power/power.h:108:23: error: type of 'swsusp_arch_resume' does not match original declaration [-Werror=lto-type-mismatch]
       extern asmlinkage int swsusp_arch_resume(void);
                             ^
      arch/x86/power/hibernate_32.c:148:0: note: 'swsusp_arch_resume' was previously declared here
       int swsusp_arch_resume(void)
      
      This moves the declaration into a globally visible header file and fixes up
      both x86 definitions to match it.
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Len Brown <len.brown@intel.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Nicolas Pitre <nico@linaro.org>
      Cc: linux-pm@vger.kernel.org
      Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
      Cc: Pavel Machek <pavel@ucw.cz>
      Cc: Bart Van Assche <bart.vanassche@wdc.com>
      Link: https://lkml.kernel.org/r/20180202145634.200291-2-arnd@arndb.de
      328008a7
  7. 13 9月, 2017 1 次提交
  8. 05 7月, 2017 2 次提交
    • C
      x86/boot/e820: Introduce the bootloader provided e820_table_firmware[] table · 12df216c
      Chen Yu 提交于
      Add the real e820_tabel_firmware[] that will not be modified by the kernel
      or the EFI boot stub under any circumstance.
      
      In addition to that modify the code so that e820_table_firmwarep[] is
      exposed via sysfs to represent the real firmware memory layout,
      rather than exposing the e820_table_kexec[] table.
      
      This fixes a hibernation bug/warning, which uses e820_table_kexec[] to check
      RAM layout consistency across hibernation/resume:
      
        The suspend kernel:
        [    0.000000] e820: update [mem 0x76671018-0x76679457] usable ==> usable
      
        The resume kernel:
        [    0.000000] e820: update [mem 0x7666f018-0x76677457] usable ==> usable
        ...
        [   15.752088] PM: Using 3 thread(s) for decompression.
        [   15.752088] PM: Loading and decompressing image data (471870 pages)...
        [   15.764971] Hibernate inconsistent memory map detected!
        [   15.770833] PM: Image mismatch: architecture specific data
      
      Actually it is safe to restore these pages because E820_TYPE_RAM and
      E820_TYPE_RESERVED_KERN are treated the same during hibernation, so
      the original e820 table provided by the bootloader is used for
      hibernation MD5 fingerprint checking.
      
      The side effect is that, this newly introduced variable might increase the
      kernel size at compile time.
      Suggested-by: NIngo Molnar <mingo@redhat.com>
      Signed-off-by: NChen Yu <yu.c.chen@intel.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: Len Brown <lenb@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Xunlei Pang <xlpang@redhat.com>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      12df216c
    • C
      x86/boot/e820: Rename the e820_table_firmware to e820_table_kexec · a09bae0f
      Chen Yu 提交于
      Currently the e820_table_firmware[] table is mainly used by the kexec,
      and it is not what it's supposed to be - despite its name it might be
      modified by the kernel.
      
      So change its name to e820_table_kexec[]. In the next patch we will
      introduce the real e820_table_firmware[] table.
      
      No functional change.
      Signed-off-by: NChen Yu <yu.c.chen@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Xunlei Pang <xlpang@redhat.com>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      a09bae0f
  9. 22 6月, 2017 1 次提交
  10. 13 6月, 2017 1 次提交
  11. 08 5月, 2017 1 次提交
    • X
      x86/mm: Add support for gbpages to kernel_ident_mapping_init() · 66aad4fd
      Xunlei Pang 提交于
      Kernel identity mappings on x86-64 kernels are created in two
      ways: by the early x86 boot code, or by kernel_ident_mapping_init().
      
      Native kernels (which is the dominant usecase) use the former,
      but the kexec and the hibernation code uses kernel_ident_mapping_init().
      
      There's a subtle difference between these two ways of how identity
      mappings are created, the current kernel_ident_mapping_init() code
      creates identity mappings always using 2MB page(PMD level) - while
      the native kernel boot path also utilizes gbpages where available.
      
      This difference is suboptimal both for performance and for memory
      usage: kernel_ident_mapping_init() needs to allocate pages for the
      page tables when creating the new identity mappings.
      
      This patch adds 1GB page(PUD level) support to kernel_ident_mapping_init()
      to address these concerns.
      
      The primary advantage would be better TLB coverage/performance,
      because we'd utilize 1GB TLBs instead of 2MB ones.
      
      It is also useful for machines with large number of memory to
      save paging structure allocations(around 4MB/TB using 2MB page)
      when setting identity mappings for all the memory, after using
      1GB page it will consume only 8KB/TB.
      
      ( Note that this change alone does not activate gbpages in kexec,
        we are doing that in a separate patch. )
      Signed-off-by: NXunlei Pang <xlpang@redhat.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: akpm@linux-foundation.org
      Cc: kexec@lists.infradead.org
      Link: http://lkml.kernel.org/r/1493862171-8799-1-git-send-email-xlpang@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      66aad4fd
  12. 14 3月, 2017 1 次提交
  13. 28 1月, 2017 6 次提交
    • I
      x86/boot/e820: Rename e820_table_saved to e820_table_firmware and improve the description · 544a0f47
      Ingo Molnar 提交于
      So the 'e820_table_saved' is a bit of a misnomer that hides its real purpose.
      
      At first sight the name suggests that it's some sort save/restore mechanism,
      as this is how we typically name such facilities in the kernel.
      
      But that is not so, e820_table_saved is the original firmware version of the
      e820 table, not modified by the kernel. This table is displayed in the
      /sys/firmware/memmap file, and it's also used by the hibernation code to
      calculate a physical memory layout MD5 fingerprint checksum which is
      invariant of the kernel.
      
      So rename it to 'e820_table_firmware' and update all the comments to better
      describe the main e820 data strutures.
      
      Also rename:
      
        'initial_e820_table_saved'  =>  'e820_table_firmware_init'
        'e820_update_range_saved'   =>  'e820_update_range_firmware'
      
      ... to better match the new nomenclature.
      
      No change in functionality.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      544a0f47
    • I
      x86/boot/e820: Harmonize the 'struct e820_table' fields · bf495573
      Ingo Molnar 提交于
      So the e820_table->map and e820_table->nr_map names are a bit
      confusing, because it's not clear what a 'map' really means
      (it could be a bitmap, or some other data structure), nor is
      it clear what nr_map means (is it a current index, or some
      other count).
      
      Rename the fields from:
      
       e820_table->map        =>     e820_table->entries
       e820_table->nr_map     =>     e820_table->nr_entries
      
      which makes it abundantly clear that these are entries
      of the table, and that the size of the table is ->nr_entries.
      
      Propagate the changes to all affected files. Where necessary,
      adjust local variable names to better reflect the new field names.
      
      No change in functionality.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      bf495573
    • I
      x86/boot/e820: Rename everything to e820_table · 61a50101
      Ingo Molnar 提交于
      No change in functionality.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      61a50101
    • I
      x86/boot/e820: Rename 'e820_map' variables to 'e820_array' · acd4c048
      Ingo Molnar 提交于
      In line with the rename to 'struct e820_array', harmonize the naming of common e820
      table variable names as well:
      
       e820          =>  e820_array
       e820_saved    =>  e820_array_saved
       e820_map      =>  e820_array
       initial_e820  =>  e820_array_init
      
      This makes the variable names more consistent  and easier to grep for.
      
      No change in functionality.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      acd4c048
    • I
      x86/boot/e820: Rename the basic e820 data types to 'struct e820_entry' and 'struct e820_array' · 8ec67d97
      Ingo Molnar 提交于
      The 'e820entry' and 'e820map' names have various annoyances:
      
       - the missing underscore departs from the usual kernel style
         and makes the code look weird,
      
       - in the past I kept confusing the 'map' with the 'entry', because
         a 'map' is ambiguous in that regard,
      
       - it's not really clear from the 'e820map' that this is a regular
         C array.
      
      Rename them to 'struct e820_entry' and 'struct e820_array' accordingly.
      
      ( Leave the legacy UAPI header alone but do the rename in the bootparam.h
        and e820/types.h file - outside tools relying on these defines should
        either adjust their code, or should use the legacy header, or should
        create their private copies for the definitions. )
      
      No change in functionality.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      8ec67d97
    • I
      x86/boot/e820: Remove spurious asm/e820/api.h inclusions · 5520b7e7
      Ingo Molnar 提交于
      A commonly used lowlevel x86 header, asm/pgtable.h, includes asm/e820/api.h
      spuriously, without making direct use of it.
      
      Removing it is not simple: over the years various .c code learned to rely
      on this indirect inclusion.
      
      Remove the unnecessary include - this should speed up the kernel build a bit,
      as a large header is not included anymore in totally unrelated code.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      5520b7e7
  14. 14 11月, 2016 1 次提交
    • C
      PM / hibernate: Verify the consistent of e820 memory map by md5 digest · 62a03def
      Chen Yu 提交于
      On some platforms, there is occasional panic triggered when
      trying to resume from hibernation, a typical panic looks like:
      
      "BUG: unable to handle kernel paging request at ffff880085894000
      IP: [<ffffffff810c5dc2>] load_image_lzo+0x8c2/0xe70"
      
      Investigation carried out by Lee Chun-Yi shows that this is because
      e820 map has been changed by BIOS across hibernation, and one
      of the page frames from suspend kernel is right located in restore
      kernel's unmapped region, so panic comes out when accessing unmapped
      kernel address.
      
      In order to expose this issue earlier, the md5 hash of e820 map
      is passed from suspend kernel to restore kernel, and the restore
      kernel will terminate the resume process once it finds the md5
      hash are not the same.
      
      As the format of image header has been modified, the magic number
      should also be adjusted as kernels with the same RESTORE_MAGIC have
      to use the same header format and interpret all of the fields in
      it in the same way.
      
      If the suspend kernel is built without md5 support, and the restore
      kernel has md5 support, then the latter will bypass the check process.
      Vice versa the restore kernel will bypass the check if it does not
      support md5 operation.
      
      Note:
      1. Without this patch applied, it is possible that BIOS has
         provided an inconsistent memory map, but the resume kernel is still
         able to restore the image anyway(e.g, E820_RAM region is the superset
         of the previous one), although the system might be unstable. So this
         patch tries to treat any inconsistent e820 as illegal.
      
      2. Another case is, this patch replies on comparing the e820_saved, but
         currently the e820_save might not be strictly the same across
         hibernation, even if BIOS has provided consistent e820 map - In
         theory mptable might modify the BIOS-provided e820_saved dynamically
         in early_reserve_e820_mpc_new, which would allocate a buffer from
         E820_RAM, and marks it from E820_RAM to E820_RESERVED).
         This is a potential and rare case we need to deal with in OS in
         the future.
      Suggested-by: NPavel Machek <pavel@ucw.cz>
      Suggested-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Signed-off-by: NChen Yu <yu.c.chen@intel.com>
      Reviewed-by: NLee, Chun-Yi <jlee@suse.com>
      Acked-by: NPavel Machek <pavel@ucw.cz>
      Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      62a03def
  15. 16 8月, 2016 1 次提交
  16. 09 8月, 2016 1 次提交
  17. 03 8月, 2016 1 次提交
    • R
      x86/power/64: Do not refer to __PAGE_OFFSET from assembly code · c226fab4
      Rafael J. Wysocki 提交于
      When CONFIG_RANDOMIZE_MEMORY is set on x86-64, __PAGE_OFFSET becomes
      a variable and using it as a symbol in the image memory restoration
      assembly code under core_restore_code is not correct any more.
      
      To avoid that problem, modify set_up_temporary_mappings() to compute
      the physical address of the temporary page tables and store it in
      temp_level4_pgt, so that the value of that variable is ready to be
      written into CR3.  Then, the assembly code doesn't have to worry
      about converting that value into a physical address and things work
      regardless of whether or not CONFIG_RANDOMIZE_MEMORY is set.
      Reported-and-tested-by: NThomas Garnier <thgarnie@google.com>
      Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      c226fab4
  18. 01 7月, 2016 1 次提交
    • R
      x86/power/64: Fix kernel text mapping corruption during image restoration · 65c0554b
      Rafael J. Wysocki 提交于
      Logan Gunthorpe reports that hibernation stopped working reliably for
      him after commit ab76f7b4 (x86/mm: Set NX on gap between __ex_table
      and rodata).
      
      That turns out to be a consequence of a long-standing issue with the
      64-bit image restoration code on x86, which is that the temporary
      page tables set up by it to avoid page tables corruption when the
      last bits of the image kernel's memory contents are copied into
      their original page frames re-use the boot kernel's text mapping,
      but that mapping may very well get corrupted just like any other
      part of the page tables.  Of course, if that happens, the final
      jump to the image kernel's entry point will go to nowhere.
      
      The exact reason why commit ab76f7b4 matters here is that it
      sometimes causes a PMD of a large page to be split into PTEs
      that are allocated dynamically and get corrupted during image
      restoration as described above.
      
      To fix that issue note that the code copying the last bits of the
      image kernel's memory contents to the page frames occupied by them
      previoulsy doesn't use the kernel text mapping, because it runs from
      a special page covered by the identity mapping set up for that code
      from scratch.  Hence, the kernel text mapping is only needed before
      that code starts to run and then it will only be used just for the
      final jump to the image kernel's entry point.
      
      Accordingly, the temporary page tables set up in swsusp_arch_resume()
      on x86-64 need to contain the kernel text mapping too.  That mapping
      is only going to be used for the final jump to the image kernel, so
      it only needs to cover the image kernel's entry point, because the
      first thing the image kernel does after getting control back is to
      switch over to its own original page tables.  Moreover, the virtual
      address of the image kernel's entry point in that mapping has to be
      the same as the one mapped by the image kernel's page tables.
      
      With that in mind, modify the x86-64's arch_hibernation_header_save()
      and arch_hibernation_header_restore() routines to pass the physical
      address of the image kernel's entry point (in addition to its virtual
      address) to the boot kernel (a small piece of assembly code involved
      in passing the entry point's virtual address to the image kernel is
      not necessary any more after that, so drop it).  Update RESTORE_MAGIC
      too to reflect the image header format change.
      
      Next, in set_up_temporary_mappings(), use the physical and virtual
      addresses of the image kernel's entry point passed in the image
      header to set up a minimum kernel text mapping (using memory pages
      that won't be overwritten by the image kernel's memory contents) that
      will map those addresses to each other as appropriate.
      
      This makes the concern about the possible corruption of the original
      boot kernel text mapping go away and if the the minimum kernel text
      mapping used for the final jump marks the image kernel's entry point
      memory as executable, the jump to it is guaraneed to succeed.
      
      Fixes: ab76f7b4 (x86/mm: Set NX on gap between __ex_table and rodata)
      Link: http://marc.info/?l=linux-pm&m=146372852823760&w=2Reported-by: NLogan Gunthorpe <logang@deltatee.com>
      Reported-and-tested-by: NBorislav Petkov <bp@suse.de>
      Tested-by: NKees Cook <keescook@chromium.org>
      Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      65c0554b
  19. 10 10月, 2014 1 次提交
  20. 06 5月, 2014 1 次提交
  21. 07 8月, 2013 1 次提交
  22. 30 1月, 2013 1 次提交
  23. 19 7月, 2010 1 次提交
  24. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  25. 01 4月, 2009 1 次提交
  26. 08 7月, 2008 1 次提交
  27. 10 2月, 2008 2 次提交