1. 31 5月, 2013 7 次提交
    • D
      xfs: fix dir3 freespace block corruption · 5ae6e6a4
      Dave Chinner 提交于
      When the directory freespace index grows to a second block (2017
      4k data blocks in the directory), the initialisation of the second
      new block header goes wrong. The write verifier fires a corruption
      error indicating that the block number in the header is zero. This
      was being tripped by xfs/110.
      
      The problem is that the initialisation of the new block is done just
      fine in xfs_dir3_free_get_buf(), but the caller then users a dirv2
      structure to zero on-disk header fields that xfs_dir3_free_get_buf()
      has already zeroed. These lined up with the block number in the dir
      v3 header format.
      
      While looking at this, I noticed that the struct xfs_dir3_free_hdr()
      had 4 bytes of padding in it that wasn't defined as padding or being
      zeroed by the initialisation. Add a pad field declaration and fully
      zero the on disk and in-core headers in xfs_dir3_free_get_buf() so
      that this is never an issue in the future. Note that this doesn't
      change the on-disk layout, just makes the 32 bits of padding in the
      layout explicit.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      5ae6e6a4
    • D
      xfs: kill suid/sgid through the truncate path. · 56c19e89
      Dave Chinner 提交于
      XFS has failed to kill suid/sgid bits correctly when truncating
      files of non-zero size since commit c4ed4243 ("xfs: split
      xfs_setattr") introduced in the 3.1 kernel. Fix it.
      
      Fix it.
      
      cc: stable kernel <stable@vger.kernel.org>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      56c19e89
    • D
      xfs: add fsgeom flag for v5 superblock support. · 74137fff
      Dave Chinner 提交于
      Currently userspace has no way of determining that a filesystem is
      CRC enabled. Add a flag to the XFS_IOC_FSGEOMETRY ioctl output to
      indicate that the filesystem has v5 superblock support enabled.
      This will allow xfs_info to correctly report the state of the
      filesystem.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NEric Sandeen <sandeen@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      74137fff
    • D
      xfs: disable swap extents ioctl on CRC enabled filesystems · 02f75405
      Dave Chinner 提交于
      Currently, swapping extents from one inode to another is a simple
      act of switching data and attribute forks from one inode to another.
      This, unfortunately in no longer so simple with CRC enabled
      filesystems as there is owner information embedded into the BMBT
      blocks that are swapped between inodes. Hence swapping the forks
      between inodes results in the inodes having mapping blocks that
      point to the wrong owner and hence are considered corrupt.
      
      To fix this we need an extent tree block or record based swap
      algorithm so that the BMBT block owner information can be updated
      atomically in the swap transaction. This is a significant piece of
      new work, so for the moment simply don't allow swap extent
      operations to succeed on CRC enabled filesystems.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      02f75405
    • D
      xfs: fix split buffer vector log recovery support · 709da6a6
      Dave Chinner 提交于
      A long time ago in a galaxy far away....
      
      .. the was a commit made to fix some ilinux specific "fragmented
      buffer" log recovery problem:
      
      http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603
      
      That problem occurred when a contiguous dirty region of a buffer was
      split across across two pages of an unmapped buffer. It's been a
      long time since that has been done in XFS, and the changes to log
      the entire inode buffers for CRC enabled filesystems has
      re-introduced that corner case.
      
      And, of course, it turns out that the above commit didn't actually
      fix anything - it just ensured that log recovery is guaranteed to
      fail when this situation occurs. And now for the gory details.
      
      xfstest xfs/085 is failing with this assert:
      
      XFS (vdb): bad number of regions (0) in inode log format
      XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583
      
      Largely undocumented factoid #1: Log recovery depends on all log
      buffer format items starting with this format:
      
      struct foo_log_format {
      	__uint16_t	type;
      	__uint16_t	size;
      	....
      
      As recoery uses the size field and assumptions about 32 bit
      alignment in decoding format items.  So don't pay much attention to
      the fact log recovery thinks that it decoding an inode log format
      item - it just uses them to determine what the size of the item is.
      
      But why would it see a log format item with a zero size? Well,
      luckily enough xfs_logprint uses the same code and gives the same
      error, so with a bit of gdb magic, it turns out that it isn't a log
      format that is being decoded. What logprint tells us is this:
      
      Oper (130): tid: a0375e1a  len: 28  clientid: TRANS  flags: none
      BUF:  #regs: 2   start blkno: 144 (0x90)  len: 16  bmap size: 2  flags: 0x4000
      Oper (131): tid: a0375e1a  len: 4096  clientid: TRANS  flags: none
      BUF DATA
      ----------------------------------------------------------------------------
      Oper (132): tid: a0375e1a  len: 4096  clientid: TRANS  flags: none
      xfs_logprint: unknown log operation type (4e49)
      **********************************************************************
      * ERROR: data block=2                                                 *
      **********************************************************************
      
      That we've got a buffer format item (oper 130) that has two regions;
      the format item itself and one dirty region. The subsequent region
      after the buffer format item and it's data is them what we are
      tripping over, and the first bytes of it at an inode magic number.
      Not a log opheader like there is supposed to be.
      
      That means there's a problem with the buffer format item. It's dirty
      data region is 4096 bytes, and it contains - you guessed it -
      initialised inodes. But inode buffers are 8k, not 4k, and we log
      them in their entirety. So something is wrong here. The buffer
      format item contains:
      
      (gdb) p /x *(struct xfs_buf_log_format *)in_f
      $22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000,
             blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2,
             blf_data_map = {0xffffffff, 0xffffffff, .... }}
      
      Two regions, and a signle dirty contiguous region of 64 bits.  64 *
      128 = 8k, so this should be followed by a single 8k region of data.
      And the blf_flags tell us that the type of buffer is a
      XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have
      the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation
      buffer. So, it should be followed by 8k of inode data.
      
      But we know that the next region has a header of:
      
      (gdb) p /x *ohead
      $25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69,
             oh_flags = 0x0, oh_res2 = 0x0}
      
      and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not
      long enough to hold all the logged data. There must be another
      region. There is - there's a following opheader for another 4k of
      data that contains the other half of the inode cluster data - the
      one we assert fail on because it's not a log format header.
      
      So why is the second part of the data not being accounted to the
      correct buffer log format structure? It took a little more work with
      gdb to work out that the buffer log format structure was both
      expecting it to be there but hadn't accounted for it. It was at that
      point I went to the kernel code, as clearly this wasn't a bug in
      xfs_logprint and the kernel was writing bad stuff to the log.
      
      First port of call was the buffer item formatting code, and the
      discontiguous memory/contiguous dirty region handling code
      immediately stood out. I've wondered for a long time why the code
      had this comment in it:
      
                              vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
                              vecp->i_len = nbits * XFS_BLF_CHUNK;
                              vecp->i_type = XLOG_REG_TYPE_BCHUNK;
      /*
       * You would think we need to bump the nvecs here too, but we do not
       * this number is used by recovery, and it gets confused by the boundary
       * split here
       *                      nvecs++;
       */
                              vecp++;
      
      And it didn't account for the extra vector pointer. The case being
      handled here is that a contiguous dirty region lies across a
      boundary that cannot be memcpy()d across, and so has to be split
      into two separate operations for xlog_write() to perform.
      
      What this code assumes is that what is written to the log is two
      consecutive blocks of data that are accounted in the buf log format
      item as the same contiguous dirty region and so will get decoded as
      such by the log recovery code.
      
      The thing is, xlog_write() knows nothing about this, and so just
      does it's normal thing of adding an opheader for each vector. That
      means the 8k region gets written to the log as two separate regions
      of 4k each, but because nvecs has not been incremented, the buf log
      format item accounts for only one of them.
      
      Hence when we come to log recovery, we process the first 4k region
      and then expect to come across a new item that starts with a log
      format structure of some kind that tells us whenteh next data is
      going to be. Instead, we hit raw buffer data and things go bad real
      quick.
      
      So, the commit from 2002 that commented out nvecs++ is just plain
      wrong. It breaks log recovery completely, and it would seem the only
      reason this hasn't been since then is that we don't log large
      contigous regions of multi-page unmapped buffers very often. Never
      would be a closer estimate, at least until the CRC code came along....
      
      So, lets fix that by restoring the nvecs accounting for the extra
      region when we hit this case.....
      
      .... and there's the problemin log recovery it is apparently working
      around:
      
      XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135
      
      Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty
      regions being broken up into multiple regions by the log formatting
      code. That's an easy fix, though - if the number of contiguous dirty
      bits exceeds the length of the region being copied out of the log,
      only account for the number of dirty bits that region covers, and
      then loop again and copy more from the next region. It's a 2 line
      fix.
      
      Now xfstests xfs/085 passes, we have one less piece of mystery
      code, and one more important piece of knowledge about how to
      structure new log format items..
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      709da6a6
    • D
      xfs: fix incorrect remote symlink block count · 321a9583
      Dave Chinner 提交于
      When CRCs are enabled, the number of blocks needed to hold a remote
      symlink on a 1k block size filesystem may be 2 instead of 1. The
      transaction reservation for the allocated blocks was not taking this
      into account and only allocating one block. Hence when trying to
      read or invalidate such symlinks, we are mapping a hole where there
      should be a block and things go bad at that point.
      
      Fix the reservation to use the correct block count, clean up the
      block count calculation similar to the remote attribute calculation,
      and add a debug guard to detect when we don't write the entire
      symlink to disk.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      321a9583
    • D
      xfs: don't emit v5 superblock warnings on write · 34510185
      Dave Chinner 提交于
      We write the superblock every 30s or so which results in the
      verifier being called. Right now that results in this output
      every 30s:
      
      XFS (vda): Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!
      Use of these features in this kernel is at your own risk!
      
      And spamming the logs.
      
      We don't need to check for whether we support v5 superblocks or
      whether there are feature bits we don't support set as these are
      only relevant when we first mount the filesytem. i.e. on superblock
      read. Hence for the write verification we can just skip all the
      checks (and hence verbose output) altogether.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      34510185
  2. 24 5月, 2013 6 次提交
    • D
      xfs: rework remote attr CRCs · ad1858d7
      Dave Chinner 提交于
      Note: this changes the on-disk remote attribute format. I assert
      that this is OK to do as CRCs are marked experimental and the first
      kernel it is included in has not yet reached release yet. Further,
      the userspace utilities are still evolving and so anyone using this
      stuff right now is a developer or tester using volatile filesystems
      for testing this feature. Hence changing the format right now to
      save longer term pain is the right thing to do.
      
      The fundamental change is to move from a header per extent in the
      attribute to a header per filesytem block in the attribute. This
      means there are more header blocks and the parsing of the attribute
      data is slightly more complex, but it has the advantage that we
      always know the size of the attribute on disk based on the length of
      the data it contains.
      
      This is where the header-per-extent method has problems. We don't
      know the size of the attribute on disk without first knowing how
      many extents are used to hold it. And we can't tell from a
      mapping lookup, either, because remote attributes can be allocated
      contiguously with other attribute blocks and so there is no obvious
      way of determining the actual size of the atribute on disk short of
      walking and mapping buffers.
      
      The problem with this approach is that if we map a buffer
      incorrectly (e.g. we make the last buffer for the attribute data too
      long), we then get buffer cache lookup failure when we map it
      correctly. i.e. we get a size mismatch on lookup. This is not
      necessarily fatal, but it's a cache coherency problem that can lead
      to returning the wrong data to userspace or writing the wrong data
      to disk. And debug kernels will assert fail if this occurs.
      
      I found lots of niggly little problems trying to fix this issue on a
      4k block size filesystem, finally getting it to pass with lots of
      fixes. The thing is, 1024 byte filesystems still failed, and it was
      getting really complex handling all the corner cases that were
      showing up. And there were clearly more that I hadn't found yet.
      
      It is complex, fragile code, and if we don't fix it now, it will be
      complex, fragile code forever more.
      
      Hence the simple fix is to add a header to each filesystem block.
      This gives us the same relationship between the attribute data
      length and the number of blocks on disk as we have without CRCs -
      it's a linear mapping and doesn't require us to guess anything. It
      is simple to implement, too - the remote block count calculated at
      lookup time can be used by the remote attribute set/get/remove code
      without modification for both CRC and non-CRC filesystems. The world
      becomes sane again.
      
      Because the copy-in and copy-out now need to iterate over each
      filesystem block, I moved them into helper functions so we separate
      the block mapping and buffer manupulations from the attribute data
      and CRC header manipulations. The code becomes much clearer as a
      result, and it is a lot easier to understand and debug. It also
      appears to be much more robust - once it worked on 4k block size
      filesystems, it has worked without failure on 1k block size
      filesystems, too.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      ad1858d7
    • D
      xfs: fully initialise temp leaf in xfs_attr3_leaf_compact · d4c712bc
      Dave Chinner 提交于
      xfs_attr3_leaf_compact() uses a temporary buffer for compacting the
      the entries in a leaf. It copies the the original buffer into the
      temporary buffer, then zeros the original buffer completely. It then
      copies the entries back into the original buffer.  However, the
      original buffer has not been correctly initialised, and so the
      movement of the entries goes horribly wrong.
      
      Make sure the zeroed destination buffer is fully initialised, and
      once we've set up the destination incore header appropriately, write
      is back to the buffer before starting to move entries around.
      
      While debugging this, the _d/_s prefixes weren't sufficient to
      remind me what buffer was what, so rename then all _src/_dst.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      d4c712bc
    • D
      xfs: fully initialise temp leaf in xfs_attr3_leaf_unbalance · 8517de2a
      Dave Chinner 提交于
      xfs_attr3_leaf_unbalance() uses a temporary buffer for recombining
      the entries in two leaves when the destination leaf requires
      compaction. The temporary buffer ends up being copied back over the
      original destination buffer, so the header in the temporary buffer
      needs to contain all the information that is in the destination
      buffer.
      
      To make sure the temporary buffer is fully initialised, once we've
      set up the temporary incore header appropriately, write is back to
      the temporary buffer before starting to move entries around.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      8517de2a
    • D
      xfs: correctly map remote attr buffers during removal · 6863ef84
      Dave Chinner 提交于
      If we don't map the buffers correctly (same as for get/set
      operations) then the incore buffer lookup will fail. If a block
      number matches but a length is wrong, then debug kernels will ASSERT
      fail in _xfs_buf_find() due to the length mismatch. Ensure that we
      map the buffers correctly by basing the length of the buffer on the
      attribute data length rather than the remote block count.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      6863ef84
    • D
      xfs: remote attribute tail zeroing does too much · 4af3644c
      Dave Chinner 提交于
      When an attribute data does not fill then entire remote block, we
      zero the remaining part of the buffer. This, however, needs to take
      into account that the buffer has a header, and so the offset where
      zeroing starts and the length of zeroing need to take this into
      account. Otherwise we end up with zeros over the end of the
      attribute value when CRCs are enabled.
      
      While there, make sure we only ask to map an extent that covers the
      remaining range of the attribute, rather than asking every time for
      the full length of remote data. If the remote attribute blocks are
      contiguous with other parts of the attribute tree, it will map those
      blocks as well and we can potentially zero them incorrectly. We can
      also get buffer size mistmatches when trying to read or remove the
      remote attribute, and this can lead to not finding the correct
      buffer when looking it up in cache.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      4af3644c
    • D
      xfs: remote attribute read too short · 913e96bc
      Dave Chinner 提交于
      Reading a maximally size remote attribute fails when CRCs are
      enabled with this verification error:
      
      XFS (vdb): remote attribute header does not match required off/len/owner)
      
      There are two reasons for this, the first being that the
      length of the buffer being read is determined from the
      args->rmtblkcnt which doesn't take into account CRC headers. Hence
      the mapped length ends up being too short and so we need to
      calculate it directly from the value length.
      
      The second is that the byte count of valid data within a buffer is
      capped by the length of the data and so doesn't take into account
      that the buffer might be longer due to headers. Hence we need to
      calculate the data space in the buffer first before calculating the
      actual byte count of data.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      913e96bc
  3. 22 5月, 2013 2 次提交
    • D
      xfs: remote attribute allocation may be contiguous · 90253cf1
      Dave Chinner 提交于
      When CRCs are enabled, there may be multiple allocations made if the
      headers cause a length overflow. This, however, does not mean that
      the number of headers required increases, as the second and
      subsequent extents may be contiguous with the previous extent. Hence
      when we map the extents to write the attribute data, we may end up
      with less extents than allocations made. Hence the assertion that we
      consume the number of headers we calculated in the allocation loop
      is incorrect and needs to be removed.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      90253cf1
    • D
      xfs: avoid nesting transactions in xfs_qm_scall_setqlim() · f648167f
      Dave Chinner 提交于
      Lockdep reports:
      
      =============================================
      [ INFO: possible recursive locking detected ]
      3.9.0+ #3 Not tainted
      ---------------------------------------------
      setquota/28368 is trying to acquire lock:
       (sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50
      
      but task is already holding lock:
       (sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50
      
      from xfs_qm_scall_setqlim()->xfs_dqread() when a dquot needs to be
      allocated.
      
      xfs_qm_scall_setqlim() is starting a transaction and then not
      passing it into xfs_qm_dqet() and so it starts it's own transaction
      when allocating the dquot.  Splat!
      
      Fix this by not allocating the dquot in xfs_qm_scall_setqlim()
      inside the setqlim transaction. This requires getting the dquot
      first (and allocating it if necessary) then dropping and relocking
      the dquot before joining it to the setqlim transaction.
      Reported-by: NMichael L. Semon <mlsemon35@gmail.com>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      f648167f
  4. 21 5月, 2013 8 次提交
    • D
      xfs: remote attribute lookups require the value length · e461fcb1
      Dave Chinner 提交于
      When reading a remote attribute, to correctly calculate the length
      of the data buffer for CRC enable filesystems, we need to know the
      length of the attribute data. We get this information when we look
      up the attribute, but we don't store it in the args structure along
      with the other remote attr information we get from the lookup. Add
      this information to the args structure so we can use it
      appropriately.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      e461fcb1
    • D
      xfs: xfs_attr_shortform_allfit() does not handle attr3 format. · b38958d7
      Dave Chinner 提交于
      xfstests generic/117 fails with:
      
      XFS: Assertion failed: leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)
      
      indicating a function that does not handle the attr3 format
      correctly. Fix it.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      b38958d7
    • D
      72916fb8
    • D
      xfs: fix missing KM_NOFS tags to keep lockdep happy · ac14876c
      Dave Chinner 提交于
      There are several places where we use KM_SLEEP allocation contexts
      and use the fact that they are called from transaction context to
      add KM_NOFS where appropriate. Unfortunately, there are several
      places where the code makes this assumption but can be called from
      outside transaction context but with filesystem locks held. These
      places need explicit KM_NOFS annotations to avoid lockdep
      complaining about reclaim contexts.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      ac14876c
    • D
      xfs: Don't reference the EFI after it is freed · 52c24ad3
      Dave Chinner 提交于
      Checking the EFI for whether it is being released from recovery
      after we've already released the known active reference is a mistake
      worthy of a brown paper bag. Fix the (now) obvious use after free
      that it can cause.
      Reported-by: NDave Jones <davej@redhat.com>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      52c24ad3
    • D
      xfs: fix rounding in xfs_free_file_space · 28ca489c
      Dave Chinner 提交于
      The offset passed into xfs_free_file_space() needs to be rounded
      down to a certain size, but the rounding mask is built by a 32 bit
      variable. Hence the mask will always mask off the upper 32 bits of
      the offset and lead to incorrect writeback and invalidation ranges.
      
      This is not actually exposed as a bug because we writeback and
      invalidate from the rounded offset to the end of the file, and hence
      the offset we are actually punching a hole out of will always be
      covered by the code. This needs fixing, however, if we ever want to
      use exact ranges for writeback/invalidation here...
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      28ca489c
    • D
      xfs: fix sub-page blocksize data integrity writes · 49b137cb
      Dave Chinner 提交于
      FSX on 512 byte block size filesystems has been failing for some
      time with corrupted data. The fault dates back to the change in
      the writeback data integrity algorithm that uses a mark-and-sweep
      approach to avoid data writeback livelocks.
      
      Unfortunately, a side effect of this mark-and-sweep approach is that
      each page will only be written once for a data integrity sync, and
      there is a condition in writeback in XFS where a page may require
      two writeback attempts to be fully written. As a result of the high
      level change, we now only get a partial page writeback during the
      integrity sync because the first pass through writeback clears the
      mark left on the page index to tell writeback that the page needs
      writeback....
      
      The cause is writing a partial page in the clustering code. This can
      happen when a mapping boundary falls in the middle of a page - we
      end up writing back the first part of the page that the mapping
      covers, but then never revisit the page to have the remainder mapped
      and written.
      
      The fix is simple - if the mapping boundary falls inside a page,
      then simple abort clustering without touching the page. This means
      that the next ->writepage entry that write_cache_pages() will make
      is the page we aborted on, and xfs_vm_writepage() will map all
      sections of the page correctly. This behaviour is also optimal for
      non-data integrity writes, as it results in contiguous sequential
      writeback of the file rather than missing small holes and having to
      write them a "random" writes in a future pass.
      
      With this fix, all the fsx tests in xfstests now pass on a 512 byte
      block size filesystem on a 4k page machine.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      49b137cb
    • J
      xfs: Avoid pathological backwards allocation · 211d022c
      Jan Kara 提交于
      Writing a large file using direct IO in 16 MB chunks sometimes results
      in a pathological allocation pattern where 16 MB chunks of large free
      extent are allocated to a file in a reversed order. So extents of a file
      look for example as:
      
       ext logical physical expected length flags
         0        0        13          4550656
         1  4550656 188136807   4550668 12562432
         2 17113088 200699240 200699238 622592
         3 17735680 182046055 201321831   4096
         4 17739776 182041959 182050150   4096
         5 17743872 182037863 182046054   4096
         6 17747968 182033767 182041958   4096
         7 17752064 182029671 182037862   4096
      ...
      6757 45400064 154381644 154389835   4096
      6758 45404160 154377548 154385739   4096
      6759 45408256 252951571 154381643  73728 eof
      
      This happens because XFS_ALLOCTYPE_THIS_BNO allocation fails (the last
      extent in the file cannot be further extended) so we fall back to
      XFS_ALLOCTYPE_NEAR_BNO allocation which picks end of a large free
      extent as the best place to continue the file. Since the chunk at the
      end of the free extent again cannot be further extended, this behavior
      repeats until the whole free extent is consumed in a reversed order.
      
      For data allocations this backward allocation isn't beneficial so make
      xfs_alloc_compute_diff() pick start of a free extent instead of its end
      for them. That avoids the backward allocation pattern.
      
      See thread at http://oss.sgi.com/archives/xfs/2013-03/msg00144.html for
      more details about the reproduction case and why this solution was
      chosen.
      
      Based on idea by Dave Chinner <dchinner@redhat.com>.
      
      CC: Dave Chinner <dchinner@redhat.com>
      Signed-off-by: NJan Kara <jack@suse.cz>
      Reviewed-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      211d022c
  5. 08 5月, 2013 4 次提交
    • K
      aio: don't include aio.h in sched.h · a27bb332
      Kent Overstreet 提交于
      Faster kernel compiles by way of fewer unnecessary includes.
      
      [akpm@linux-foundation.org: fix fallout]
      [akpm@linux-foundation.org: fix build]
      Signed-off-by: NKent Overstreet <koverstreet@google.com>
      Cc: Zach Brown <zab@redhat.com>
      Cc: Felipe Balbi <balbi@ti.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Mark Fasheh <mfasheh@suse.com>
      Cc: Joel Becker <jlbec@evilplan.org>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Asai Thambi S P <asamymuthupa@micron.com>
      Cc: Selvan Mani <smani@micron.com>
      Cc: Sam Bradshaw <sbradshaw@micron.com>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Benjamin LaHaise <bcrl@kvack.org>
      Reviewed-by: N"Theodore Ts'o" <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a27bb332
    • E
      xfs: fallback to vmalloc for large buffers in xfs_compat_attrlist_by_handle · 7dfbcbef
      Eric Sandeen 提交于
      Shamelessly copied from dchinner's:
      ad650f5b xfs: fallback to vmalloc for large buffers in xfs_attrmulti_attr_get
          
      xfsdump uses a large buffer for extended attributes, which has a
      kmalloc'd shadow buffer in the kernel. This can fail after the
      system has been running for some time as it is a high order
      allocation. Add a fallback to vmalloc so that it doesn't require
      contiguous memory and so won't randomly fail while xfsdump is
      running.
      
      This was done for xfs_attrlist_by_handle but
      xfs_compat_attrlist_by_handle (the 32-bit version) needs the same
      attention.
      Signed-off-by: NEric Sandeen <sandeen@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      7dfbcbef
    • E
      xfs: fallback to vmalloc for large buffers in xfs_attrlist_by_handle · dd700d94
      Eric Sandeen 提交于
      Shamelessly copied from dchinner's:
      ad650f5b xfs: fallback to vmalloc for large buffers in xfs_attrmulti_attr_get
          
      xfsdump uses for a large buffer for extended attributes, which has a
      kmalloc'd shadow buffer in the kernel. This can fail after the
      system has been running for some time as it is a high order
      allocation. Add a fallback to vmalloc so that it doesn't require
      contiguous memory and so won't randomly fail while xfsdump is
      running.
      Signed-off-by: NEric Sandeen <sandeen@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      dd700d94
    • D
      xfs: introduce CONFIG_XFS_WARN · 742ae1e3
      Dave Chinner 提交于
      Running a CONFIG_XFS_DEBUG kernel in production environments is not
      the best idea as it introduces significant overhead, can change
      the behaviour of algorithms (such as allocation) to improve test
      coverage, and (most importantly) panic the machine on non-fatal
      errors.
      
      There are many cases where all we want to do is run a
      kernel with more bounds checking enabled, such as is provided by the
      ASSERT() statements throughout the code, but without all the
      potential overhead and drawbacks.
      
      This patch converts all the ASSERT statements to evaluate as
      WARN_ON(1) statements and hence if they fail dump a warning and a
      stack trace to the log. This has minimal overhead and does not
      change any algorithms, and will allow us to find strange "out of
      bounds" problems more easily on production machines.
      
      There are a few places where assert statements contain debug only
      code. These are converted to be debug-or-warn only code so that we
      still get all the assert checks in the code.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      742ae1e3
  6. 02 5月, 2013 2 次提交
  7. 01 5月, 2013 1 次提交
  8. 28 4月, 2013 10 次提交
    • D
      xfs: implement extended feature masks · e721f504
      Dave Chinner 提交于
      The version 5 superblock has extended feature masks for compatible,
      incompatible and read-only compatible feature sets. Implement the
      masking and mount-time checking for these feature masks.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      e721f504
    • D
      xfs: add CRC checks to the superblock · 04a1e6c5
      Dave Chinner 提交于
      With the addition of CRCs, there is such a wide and varied change to
      the on disk format that it makes sense to bump the superblock
      version number rather than try to use feature bits for all the new
      functionality.
      
      This commit introduces all the new superblock fields needed for all
      the new functionality: feature masks similar to ext4, separate
      project quota inodes, a LSN field for recovery and the CRC field.
      
      This commit does not bump the superblock version number, however.
      That will be done as a separate commit at the end of the series
      after all the new functionality is present so we switch it all on in
      one commit. This means that we can slowly introduce the changes
      without them being active and hence maintain bisectability of the
      tree.
      
      This patch is based on a patch originally written by myself back
      from SGI days, which was subsequently modified by Christoph Hellwig.
      There is relatively little of that patch remaining, but the history
      of the patch still should be acknowledged here.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      04a1e6c5
    • D
      xfs: buffer type overruns blf_flags field · 61fe135c
      Dave Chinner 提交于
      The buffer type passed to log recvoery in the buffer log item
      overruns the blf_flags field. I had assumed that flags field was a
      32 bit value, and it turns out it is a unisgned short. Therefore
      having 19 flags doesn't really work.
      
      Convert the buffer type field to numeric value, and use the top 5
      bits of the flags field for it. We currently have 17 types of
      buffers, so using 5 bits gives us plenty of room for expansion in
      future....
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      61fe135c
    • D
      xfs: add buffer types to directory and attribute buffers · d75afeb3
      Dave Chinner 提交于
      Add buffer types to the buffer log items so that log recovery can
      validate the buffers and calculate CRCs correctly after the buffers
      are recovered.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      d75afeb3
    • D
      xfs: add CRC protection to remote attributes · d2e448d5
      Dave Chinner 提交于
      There are two ways of doing this - the first is to add a CRC to the
      remote attribute entry in the attribute block. The second is to
      treat them similar to the remote symlink, where each fragment has
      it's own header and identifies fragment location in the attribute.
      
      The problem with the CRC in the remote attr entry is that we cannot
      identify the owner of the metadata from the metadata blocks
      themselves, or where the blocks fit into the remote attribute. The
      down side to this approach is that we never know when the attribute
      has been read from disk or not and so we have to verify it every
      time it is read, and we must calculate it during the create
      transaction and log it. We do not log CRCs for any other metadata,
      and so this creates a unique set of coherency problems that, in
      general, are best avoided.
      
      Adding an identifying header to each allocated block allows us to
      identify each fragment and where in the attribute it is located. It
      enables us to rebuild the remote attribute from just the raw blocks
      containing the attribute. It also provides us to do per-block CRCs
      verification at IO time rather than during the transaction context
      that creates it or every time it is read into a user buffer. Hence
      it avoids all the problems that an external, logged CRC has, and
      provides all the benefits of self identifying metadata.
      
      The only complexity is that we have to add a header per fragment,
      and we don't know how many fragments will be needed prior to
      allocations. If we take the symlink example, the header is 56 bytes
      and hence for a 4k block size filesystem, in the worst case 16
      headers requires 1 extra block for the 64k attribute data. For 512
      byte filesystems the worst case is an extra block for every 9
      fragments (i.e. 16 extra blocks in the worse case). This will be
      very rare and so it's not really a major concern.
      
      Because allocation is done in two steps - the first finds a hole
      large enough in the attribute file, the second does the allocation -
      we only need to find a hole big enough for a worst case allocation.
      We only need to allocate enough extra blocks for number of headers
      required by the fragments, and we can calculate that as we go....
      
      Hence it really only makes sense to use the same model as for
      symlinks - it doesn't add that much complexity, does not require an
      attribute tree format change, and does not require logging
      calculated CRC values.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      d2e448d5
    • D
      xfs: split remote attribute code out · 95920cd6
      Dave Chinner 提交于
      Adding CRC support to remote attributes adds a significant amount of
      remote attribute specific code. Split the existing remote attribute
      code out into it's own file so that all the relevant remote
      attribute code is in a single, easy to find place.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      95920cd6
    • D
      xfs: add CRCs to attr leaf blocks · 517c2220
      Dave Chinner 提交于
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      517c2220
    • D
      xfs: add CRCs to dir2/da node blocks · f5ea1100
      Dave Chinner 提交于
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      f5ea1100
    • D
      xfs: shortform directory offsets change for dir3 format · 6b2647a1
      Dave Chinner 提交于
      Because the header size for the CRC enabled directory blocks is
      larger, the offset of the first entry into a directory block is
      different to the dir2 format. The shortform directory stores the
      dirent's offset so that it doesn't change when moving from shortform
      to block form and back again, and hence it needs to take into
      account the different header sizes to maintain the correct offsets.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      6b2647a1
    • D
      xfs: add CRC checking to dir2 leaf blocks · 24df33b4
      Dave Chinner 提交于
      This addition follows the same pattern as the dir2 block CRCs.
      Seeing as both LEAF1 and LEAFN types need to changed at the same
      time, this is a pretty large amount of change. leaf block headers
      need to be abstracted away from the on-disk structures (struct
      xfs_dir3_icleaf_hdr), as do the base leaf entry locations.
      
      This header abstract allows the in-core header and leaf entry
      location to be passed around instead of the leaf block itself. This
      saves a lot of converting individual variables from on-disk format
      to host format where they are used, so there's a good chance that
      the compiler will be able to produce much more optimal code as it's
      not having to byteswap variables all over the place.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      24df33b4