1. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  2. 15 3月, 2010 6 次提交
    • A
      btrfs: use memparse · 91748467
      Akinobu Mita 提交于
      Use memparse() instead of its own private implementation.
      Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com>
      Cc: Chris Mason <chris.mason@oracle.com>
      Cc: linux-btrfs@vger.kernel.org
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      91748467
    • J
      Btrfs: cache the extent state everywhere we possibly can V2 · 2ac55d41
      Josef Bacik 提交于
      This patch just goes through and fixes everybody that does
      
      lock_extent()
      blah
      unlock_extent()
      
      to use
      
      lock_extent_bits()
      blah
      unlock_extent_cached()
      
      and pass around a extent_state so we only have to do the searches once per
      function.  This gives me about a 3 mb/s boots on my random write test.  I have
      not converted some things, like the relocation and ioctl's, since they aren't
      heavily used and the relocation stuff is in the middle of being re-written.  I
      also changed the clear_extent_bit() to only unset the cached state if we are
      clearing EXTENT_LOCKED and related stuff, so we can do things like this
      
      lock_extent_bits()
      clear delalloc bits
      unlock_extent_cached()
      
      without losing our cached state.  I tested this thoroughly and turned on
      LEAK_DEBUG to make sure we weren't leaking extent states, everything worked out
      fine.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      2ac55d41
    • C
      Btrfs: add new defrag-range ioctl. · 1e701a32
      Chris Mason 提交于
      The btrfs defrag ioctl was limited to doing the entire file.  This
      commit adds a new interface that can defrag a specific range inside
      the file.
      
      It can also force compression on the file, allowing you to selectively
      compress individual files after they were created, even when mount -o
      compress isn't turned on.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1e701a32
    • J
      Btrfs: add ioctl and incompat flag to set the default mount subvol · 6ef5ed0d
      Josef Bacik 提交于
      This patch needs to go along with my previous patch.  This lets us set the
      default dir item's location to whatever root we want to use as our default
      mounting subvol.  With this we don't have to use mount -o subvol=<tree id>
      anymore to mount a different subvol, we can just set the new one and it will
      just magically work.  I've done some moderate testing with this, mostly just
      switching the default mount around, mounting subvols and the default mount at
      the same time and such, everything seems to work.  Thanks,
      
      Older kernels would generally be able to still mount the filesystem with the
      default subvolume set, but it would result in a different volume being mounted,
      which could be an even more unpleasant suprise for users.  So if you set your
      default subvolume, you can't go back to older kernels.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      6ef5ed0d
    • J
      Btrfs: change how we mount subvolumes · 73f73415
      Josef Bacik 提交于
      This work is in preperation for being able to set a different root as the
      default mounting root.
      
      There is currently a problem with how we mount subvolumes.  We cannot currently
      mount a subvolume of a subvolume, you can only mount subvolumes/snapshots of the
      default subvolume.  So say you take a snapshot of the default subvolume and call
      it snap1, and then take a snapshot of snap1 and call it snap2, so now you have
      
      /
      /snap1
      /snap1/snap2
      
      as your available volumes.  Currently you can only mount / and /snap1,
      you cannot mount /snap1/snap2.  To fix this problem instead of passing
      subvolid=<name> you must pass in subvolid=<treeid>, where <treeid> is
      the tree id that gets spit out via the subvolume listing you get from
      the subvolume listing patches (btrfs filesystem list).  This allows us
      to mount /, /snap1 and /snap1/snap2 as the root volume.
      
      In addition to the above, we also now read the default dir item in the
      tree root to get the root key that it points to.  For now this just
      points at what has always been the default subvolme, but later on I plan
      to change it to point at whatever root you want to be the new default
      root, so you can just set the default mount and not have to mount with
      -o subvolid=<treeid>.  I tested this out with the above scenario and it
      worked perfectly.  Thanks,
      
      mount -o subvol operates inside the selected subvolid.  For example:
      
      mount -o subvol=snap1,subvolid=256 /dev/xxx /mnt
      
      /mnt will have the snap1 directory for the subvolume with id
      256.
      
      mount -o subvol=snap /dev/xxx /mnt
      
      /mnt will be the snap directory of whatever the default subvolume
      is.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      73f73415
    • J
      Btrfs: make set/get functions for the super compat_ro flags use compat_ro · 12534832
      Josef Bacik 提交于
      Our set/get functions for compat_ro_flags actually look at compat_flags.  This
      will mess any attempt to use compat flags up.  The fix is obvious.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      12534832
  3. 06 3月, 2010 1 次提交
  4. 29 1月, 2010 1 次提交
    • C
      Btrfs: Add mount -o compress-force · a555f810
      Chris Mason 提交于
      The default btrfs mount -o compress mode will quickly back off
      compressing a file if it notices that compression does not reduce the
      size of the data being written.  This can save considerable CPU because
      all future writes to the file go through uncompressed.
      
      But some files are both very large and have mixed data stored in
      them.  In that case, we want to add the ability to always try
      compressing data before writing it.
      
      This commit adds mount -o compress-force.  A later commit will add
      a new inode flag that does the same thing.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      a555f810
  5. 18 12月, 2009 4 次提交
  6. 16 12月, 2009 2 次提交
  7. 14 10月, 2009 3 次提交
    • C
      Btrfs: add -o discard option · e244a0ae
      Christoph Hellwig 提交于
      Enable discard by default is not a good idea given the the trim speed
      of SSD prototypes we've seen, and the carecteristics for many high-end
      arrays.  Turn of discards by default and require the -o discard option
      to enable them on.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      e244a0ae
    • C
      Btrfs: fix btrfs acl #ifdef checks · 0eda294d
      Chris Mason 提交于
      The btrfs acl code was #ifdefing for a define
      that didn't exist.  This correctly matches it
      to the values used by the Kconfig file.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      0eda294d
    • C
      Btrfs: avoid tree log commit when there are no changes · 257c62e1
      Chris Mason 提交于
      rpm has a habit of running fdatasync when the file hasn't
      changed.  We already detect if a file hasn't been changed
      in the current transaction but it might have been sent to
      the tree-log in this transaction and not changed since
      the last call to fsync.
      
      In this case, we want to avoid a tree log sync, which includes
      a number of synchronous writes and barriers.  This commit
      extends the existing tracking of the last transaction to change
      a file to also track the last sub-transaction.
      
      The end result is that rpm -ivh and -Uvh are roughly twice as fast,
      and on par with ext3.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      257c62e1
  8. 09 10月, 2009 4 次提交
    • A
      Btrfs: constify dentry_operations · 82d339d9
      Alexey Dobriyan 提交于
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      82d339d9
    • J
      Btrfs: optimize fsync for the single writer case · ff782e0a
      Josef Bacik 提交于
      This patch optimizes the tree logging stuff so it doesn't always wait 1 jiffie
      for new people to join the logging transaction if there is only ever 1 writer.
      This helps a little bit with latency where we have something like RPM where it
      will fdatasync every file it writes, and so waiting the 1 jiffie for every
      fdatasync really starts to add up.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      ff782e0a
    • J
      Btrfs: async delalloc flushing under space pressure · e3ccfa98
      Josef Bacik 提交于
      This patch moves the delalloc flushing that occurs when we are under space
      pressure off to a async thread pool.  This helps since we only free up
      metadata space when we actually insert the extent item, which means it takes
      quite a while for space to be free'ed up if we wait on all ordered extents.
      However, if space is freed up due to inline extents being inserted, we can
      wake people who are waiting up early, and they can finish their work.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      e3ccfa98
    • J
      Btrfs: release delalloc reservations on extent item insertion · 32c00aff
      Josef Bacik 提交于
      This patch fixes an issue with the delalloc metadata space reservation
      code.  The problem is we used to free the reservation as soon as we
      allocated the delalloc region.  The problem with this is if we are not
      inserting an inline extent, we don't actually insert the extent item until
      after the ordered extent is written out.  This patch does 3 things,
      
      1) It moves the reservation clearing stuff into the ordered code, so when
      we remove the ordered extent we remove the reservation.
      2) It adds a EXTENT_DO_ACCOUNTING flag that gets passed when we clear
      delalloc bits in the cases where we want to clear the metadata reservation
      when we clear the delalloc extent, in the case that we do an inline extent
      or we invalidate the page.
      3) It adds another waitqueue to the space info so that when we start a fs
      wide delalloc flush, anybody else who also hits that area will simply wait
      for the flush to finish and then try to make their allocation.
      
      This has been tested thoroughly to make sure we did not regress on
      performance.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      32c00aff
  9. 05 10月, 2009 1 次提交
    • C
      Btrfs: fix deadlock on async thread startup · 61d92c32
      Chris Mason 提交于
      The btrfs async worker threads are used for a wide variety of things,
      including processing bio end_io functions.  This means that when
      the endio threads aren't running, the rest of the FS isn't
      able to do the final processing required to clear PageWriteback.
      
      The endio threads also try to exit as they become idle and
      start more as the work piles up.  The problem is that starting more
      threads means kthreadd may need to allocate ram, and that allocation
      may wait until the global number of writeback pages on the system is
      below a certain limit.
      
      The result of that throttling is that end IO threads wait on
      kthreadd, who is waiting on IO to end, which will never happen.
      
      This commit fixes the deadlock by handing off thread startup to a
      dedicated thread.  It also fixes a bug where the on-demand thread
      creation was creating far too many threads because it didn't take into
      account threads being started by other procs.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      61d92c32
  10. 02 10月, 2009 1 次提交
  11. 30 9月, 2009 1 次提交
  12. 29 9月, 2009 1 次提交
    • J
      Btrfs: proper -ENOSPC handling · 9ed74f2d
      Josef Bacik 提交于
      At the start of a transaction we do a btrfs_reserve_metadata_space() and
      specify how many items we plan on modifying.  Then once we've done our
      modifications and such, just call btrfs_unreserve_metadata_space() for
      the same number of items we reserved.
      
      For keeping track of metadata needed for data I've had to add an extent_io op
      for when we merge extents.  This lets us track space properly when we are doing
      sequential writes, so we don't end up reserving way more metadata space than
      what we need.
      
      The only place where the metadata space accounting is not done is in the
      relocation code.  This is because Yan is going to be reworking that code in the
      near future, so running btrfs-vol -b could still possibly result in a ENOSPC
      related panic.  This patch also turns off the metadata_ratio stuff in order to
      allow users to more efficiently use their disk space.
      
      This patch makes it so we track how much metadata we need for an inode's
      delayed allocation extents by tracking how many extents are currently
      waiting for allocation.  It introduces two new callbacks for the
      extent_io tree's, merge_extent_hook and split_extent_hook.  These help
      us keep track of when we merge delalloc extents together and split them
      up.  Reservations are handled prior to any actually dirty'ing occurs,
      and then we unreserve after we dirty.
      
      btrfs_unreserve_metadata_for_delalloc() will make the appropriate
      unreservations as needed based on the number of reservations we
      currently have and the number of extents we currently have.  Doing the
      reservation outside of doing any of the actual dirty'ing lets us do
      things like filemap_flush() the inode to try and force delalloc to
      happen, or as a last resort actually start allocation on all delalloc
      inodes in the fs.  This has survived dbench, fs_mark and an fsx torture
      test.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9ed74f2d
  13. 22 9月, 2009 5 次提交
    • J
      Btrfs: account for space used by the super mirrors · 1b2da372
      Josef Bacik 提交于
      As we get closer to proper -ENOSPC handling in btrfs, we need more accurate
      space accounting for the space info's.  Currently we exclude the free space for
      the super mirrors, but the space they take up isn't accounted for in any of the
      counters.  This patch introduces bytes_super, which keeps track of the amount
      of bytes used for a super mirror in the block group cache and space info.  This
      makes sure that our free space caclucations will be completely accurate.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1b2da372
    • J
      Btrfs: make balance code choose more wisely when relocating · ba1bf481
      Josef Bacik 提交于
      Currently, we can panic the box if the first block group we go to move is of a
      type where there is no space left to move those extents.  For example, if we
      fill the disk up with data, and then we try to balance and we have no room to
      move the data nor room to allocate new chunks, we will panic.  Change this by
      checking to see if we have room to move this chunk around, and if not, return
      -ENOSPC and move on to the next chunk.  This will make sure we remove block
      groups that are moveable, like if we have alot of empty metadata block groups,
      and then that way we make room to be able to balance our data chunks as well.
      Tested this with an fs that would panic on btrfs-vol -b normally, but no longer
      panics with this patch.
      
      V1->V2:
      -actually search for a free extent on the device to make sure we can allocate a
      chunk if need be.
      
      -fix btrfs_shrink_device to make sure we actually try to relocate all the
      chunks, and then if we can't return -ENOSPC so if we are doing a btrfs-vol -r
      we don't remove the device with data still on it.
      
      -check to make sure the block group we are going to relocate isn't the last one
      in that particular space
      
      -fix a bug in btrfs_shrink_device where we would change the device's size and
      not fix it if we fail to do our relocate
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      ba1bf481
    • Y
      Btrfs: add snapshot/subvolume destroy ioctl · 76dda93c
      Yan, Zheng 提交于
      This patch adds snapshot/subvolume destroy ioctl.  A subvolume that isn't being
      used and doesn't contains links to other subvolumes can be destroyed.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      76dda93c
    • Y
      Btrfs: change how subvolumes are organized · 4df27c4d
      Yan, Zheng 提交于
      btrfs allows subvolumes and snapshots anywhere in the directory tree.
      If we snapshot a subvolume that contains a link to other subvolume
      called subvolA, subvolA can be accessed through both the original
      subvolume and the snapshot. This is similar to creating hard link to
      directory, and has the very similar problems.
      
      The aim of this patch is enforcing there is only one access point to
      each subvolume. Only the first directory entry (the one added when
      the subvolume/snapshot was created) is treated as valid access point.
      The first directory entry is distinguished by checking root forward
      reference. If the corresponding root forward reference is missing,
      we know the entry is not the first one.
      
      This patch also adds snapshot/subvolume rename support, the code
      allows rename subvolume link across subvolumes.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      4df27c4d
    • Y
      Btrfs: do not reuse objectid of deleted snapshot/subvol · 13a8a7c8
      Yan, Zheng 提交于
      The new back reference format does not allow reusing objectid of
      deleted snapshot/subvol. So we use ++highest_objectid to allocate
      objectid for new snapshot/subvol.
      
      Now we use ++highest_objectid to allocate objectid for both new inode
      and new snapshot/subvolume, so this patch removes 'find hole' code in
      btrfs_find_free_objectid.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      13a8a7c8
  14. 18 9月, 2009 1 次提交
    • Y
      Btrfs: improve async block group caching · 11833d66
      Yan Zheng 提交于
      This patch gets rid of two limitations of async block group caching.
      The old code delays handling pinned extents when block group is in
      caching. To allocate logged file extents, the old code need wait
      until block group is fully cached. To get rid of the limitations,
      This patch introduces a data structure to track the progress of
      caching. Base on the caching progress, we know which extents should
      be added to the free space cache when handling the pinned extents.
      The logged file extents are also handled in a similar way.
      
      This patch also changes how pinned extents are tracked. The old
      code uses one tree to track pinned extents, and copy the pinned
      extents tree at transaction commit time. This patch makes it use
      two trees to track pinned extents. One tree for extents that are
      pinned in the running transaction, one tree for extents that can
      be unpinned. At transaction commit time, we swap the two trees.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      11833d66
  15. 12 9月, 2009 1 次提交
    • C
      Btrfs: Fix extent replacment race · a1ed835e
      Chris Mason 提交于
      Data COW means that whenever we write to a file, we replace any old
      extent pointers with new ones.  There was a window where a readpage
      might find the old extent pointers on disk and cache them in the
      extent_map tree in ram in the middle of a given write replacing them.
      
      Even though both the readpage and the write had their respective bytes
      in the file locked, the extent readpage inserts may cover more bytes than
      it had locked down.
      
      This commit closes the race by keeping the new extent pinned in the extent
      map tree until after the on-disk btree is properly setup with the new
      extent pointers.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      a1ed835e
  16. 30 7月, 2009 1 次提交
    • Y
      Btrfs: preserve commit_root for async caching · 276e680d
      Yan Zheng 提交于
      The async block group caching code uses the commit_root pointer
      to get a stable version of the extent allocation tree for scanning.
      This copy of the tree root isn't going to change and it significantly
      reduces the complexity of the scanning code.
      
      During a commit, we have a loop where we update the extent allocation
      tree root.  We need to loop because updating the root pointer in
      the tree of tree roots may allocate blocks which may change the
      extent allocation tree.
      
      Right now the commit_root pointer is changed inside this loop.  It
      is more correct to change the commit_root pointer only after all the
      looping is done.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      276e680d
  17. 28 7月, 2009 1 次提交
    • J
      Btrfs: change how we unpin extents · 68b38550
      Josef Bacik 提交于
      We are racy with async block caching and unpinning extents.  This patch makes
      things much less complicated by only unpinning the extent if the block group is
      cached.  We check the block_group->cached var under the block_group->lock spin
      lock.  If it is set to BTRFS_CACHE_FINISHED then we update the pinned counters,
      and unpin the extent and add the free space back.  If it is not set to this, we
      start the caching of the block group so the next time we unpin extents we can
      unpin the extent.  This keeps us from racing with the async caching threads,
      lets us kill the fs wide async thread counter, and keeps us from having to set
      DELALLOC bits for every extent we hit if there are caching kthreads going.
      
      One thing that needed to be changed was btrfs_free_super_mirror_extents.  Now
      instead of just looking for LOCKED extents, we also look for DIRTY extents,
      since we could have left some extents pinned in the previous transaction that
      will never get freed now that we are unmounting, which would cause us to leak
      memory.  So btrfs_free_super_mirror_extents has been changed to
      btrfs_free_pinned_extents, and it will clear the extents locked for the super
      mirror, and any remaining pinned extents that may be present.  Thank you,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      68b38550
  18. 24 7月, 2009 2 次提交
    • J
      Btrfs: async block group caching · 817d52f8
      Josef Bacik 提交于
      This patch moves the caching of the block group off to a kthread in order to
      allow people to allocate sooner.  Instead of blocking up behind the caching
      mutex, we instead kick of the caching kthread, and then attempt to make an
      allocation.  If we cannot, we wait on the block groups caching waitqueue, which
      the caching kthread will wake the waiting threads up everytime it finds 2 meg
      worth of space, and then again when its finished caching.  This is how I tested
      the speedup from this
      
      mkfs the disk
      mount the disk
      fill the disk up with fs_mark
      unmount the disk
      mount the disk
      time touch /mnt/foo
      
      Without my changes this took 11 seconds on my box, with these changes it now
      takes 1 second.
      
      Another change thats been put in place is we lock the super mirror's in the
      pinned extent map in order to keep us from adding that stuff as free space when
      caching the block group.  This doesn't really change anything else as far as the
      pinned extent map is concerned, since for actual pinned extents we use
      EXTENT_DIRTY, but it does mean that when we unmount we have to go in and unlock
      those extents to keep from leaking memory.
      
      I've also added a check where when we are reading block groups from disk, if the
      amount of space used == the size of the block group, we go ahead and mark the
      block group as cached.  This drastically reduces the amount of time it takes to
      cache the block groups.  Using the same test as above, except doing a dd to a
      file and then unmounting, it used to take 33 seconds to umount, now it takes 3
      seconds.
      
      This version uses the commit_root in the caching kthread, and then keeps track
      of how many async caching threads are running at any given time so if one of the
      async threads is still running as we cross transactions we can wait until its
      finished before handling the pinned extents.  Thank you,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      817d52f8
    • J
      Btrfs: use hybrid extents+bitmap rb tree for free space · 96303081
      Josef Bacik 提交于
      Currently btrfs has a problem where it can use a ridiculous amount of RAM simply
      tracking free space.  As free space gets fragmented, we end up with thousands of
      entries on an rb-tree per block group, which usually spans 1 gig of area.  Since
      we currently don't ever flush free space cache back to disk this gets to be a
      bit unweildly on large fs's with lots of fragmentation.
      
      This patch solves this problem by using PAGE_SIZE bitmaps for parts of the free
      space cache.  Initially we calculate a threshold of extent entries we can
      handle, which is however many extent entries we can cram into 16k of ram.  The
      maximum amount of RAM that should ever be used to track 1 gigabyte of diskspace
      will be 32k of RAM, which scales much better than we did before.
      
      Once we pass the extent threshold, we start adding bitmaps and using those
      instead for tracking the free space.  This patch also makes it so that any free
      space thats less than 4 * sectorsize we go ahead and put into a bitmap.  This is
      nice since we try and allocate out of the front of a block group, so if the
      front of a block group is heavily fragmented and then has a huge chunk of free
      space at the end, we go ahead and add the fragmented areas to bitmaps and use a
      normal extent entry to track the big chunk at the back of the block group.
      
      I've also taken the opportunity to revamp how we search for free space.
      Previously we indexed free space via an offset indexed rb tree and a bytes
      indexed rb tree.  I've dropped the bytes indexed rb tree and use only the offset
      indexed rb tree.  This cuts the number of tree operations we were doing
      previously down by half, and gives us a little bit of a better allocation
      pattern since we will always start from a specific offset and search forward
      from there, instead of searching for the size we need and try and get it as
      close as possible to the offset we want.
      
      I've given this a healthy amount of testing pre-new format stuff, as well as
      post-new format stuff.  I've booted up my fedora box which is installed on btrfs
      with this patch and ran with it for a few days without issues.  I've not seen
      any performance regressions in any of my tests.
      
      Since the last patch Yan Zheng fixed a problem where we could have overlapping
      entries, so updating their offset inline would cause problems.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      96303081
  19. 22 7月, 2009 1 次提交
  20. 03 7月, 2009 1 次提交
    • Y
      Btrfs: update backrefs while dropping snapshot · 2c47e605
      Yan Zheng 提交于
      The new backref format has restriction on type of backref item.  If a tree
      block isn't referenced by its owner tree, full backrefs must be used for the
      pointers in it. When a tree block loses its owner tree's reference, backrefs
      for the pointers in it should be updated to full backrefs. Current
      btrfs_drop_snapshot misses the code that updates backrefs, so it's unsafe for
      general use.
      
      This patch adds backrefs update code to btrfs_drop_snapshot.  It isn't a
      problem in the restricted form btrfs_drop_snapshot is used today, but for
      general snapshot deletion this update is required.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      2c47e605
  21. 24 6月, 2009 1 次提交