1. 26 6月, 2015 4 次提交
    • D
      libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only · 58138820
      Dan Williams 提交于
      Upon detection of an unarmed dimm in a region, arrange for descendant
      BTT, PMEM, or BLK instances to be read-only.  A dimm is primarily marked
      "unarmed" via flags passed by platform firmware (NFIT).
      
      The flags in the NFIT memory device sub-structure indicate the state of
      the data on the nvdimm relative to its energy source or last "flush to
      persistence".  For the most part there is nothing the driver can do but
      advertise the state of these flags in sysfs and emit a message if
      firmware indicates that the contents of the device may be corrupted.
      However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for
      the block devices incorporating that nvdimm to be marked read-only.
      This is a safe default as the data is still available and new writes are
      held off until the administrator either forces read-write mode, or the
      energy source becomes armed.
      
      A 'read_only' attribute is added to REGION devices to allow for
      overriding the default read-only policy of all descendant block devices.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      58138820
    • D
      libnvdimm: enable iostat · f0dc089c
      Dan Williams 提交于
      This is disabled by default as the overhead is prohibitive, but if the
      user takes the action to turn it on we'll oblige.
      Reviewed-by: NVishal Verma <vishal.l.verma@linux.intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      f0dc089c
    • V
      libnvdimm, btt: add support for blk integrity · 41cd8b70
      Vishal Verma 提交于
      Support multiple block sizes (sector + metadata) using the blk integrity
      framework. This registers a new integrity template that defines the
      protection information tuple size based on the configured metadata size,
      and simply acts as a passthrough for protection information generated by
      another layer. The metadata is written to the storage as-is, and read back
      with each sector.
      Signed-off-by: NVishal Verma <vishal.l.verma@linux.intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      41cd8b70
    • V
      nd_btt: atomic sector updates · 5212e11f
      Vishal Verma 提交于
      BTT stands for Block Translation Table, and is a way to provide power
      fail sector atomicity semantics for block devices that have the ability
      to perform byte granularity IO. It relies on the capability of libnvdimm
      namespace devices to do byte aligned IO.
      
      The BTT works as a stacked blocked device, and reserves a chunk of space
      from the backing device for its accounting metadata. It is a bio-based
      driver because all IO is done synchronously, and there is no queuing or
      asynchronous completions at either the device or the driver level.
      
      The BTT uses 'lanes' to index into various 'on-disk' data structures,
      and lanes also act as a synchronization mechanism in case there are more
      CPUs than available lanes. We did a comparison between two lane lock
      strategies - first where we kept an atomic counter around that tracked
      which was the last lane that was used, and 'our' lane was determined by
      atomically incrementing that. That way, for the nr_cpus > nr_lanes case,
      theoretically, no CPU would be blocked waiting for a lane. The other
      strategy was to use the cpu number we're scheduled on to and hash it to
      a lane number. Theoretically, this could block an IO that could've
      otherwise run using a different, free lane. But some fio workloads
      showed that the direct cpu -> lane hash performed faster than tracking
      'last lane' - my reasoning is the cache thrash caused by moving the
      atomic variable made that approach slower than simply waiting out the
      in-progress IO. This supports the conclusion that the driver can be a
      very simple bio-based one that does synchronous IOs instead of queuing.
      
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jens Axboe <axboe@fb.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Neil Brown <neilb@suse.de>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      [jmoyer: fix nmi watchdog timeout in btt_map_init]
      [jmoyer: move btt initialization to module load path]
      [jmoyer: fix memory leak in the btt initialization path]
      [jmoyer: Don't overwrite corrupted arenas]
      Signed-off-by: NVishal Verma <vishal.l.verma@linux.intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      5212e11f