1. 12 12月, 2012 2 次提交
  2. 09 12月, 2012 1 次提交
    • L
      vfs: fix O_DIRECT read past end of block device · 684c9aae
      Linus Torvalds 提交于
      The direct-IO write path already had the i_size checks in mm/filemap.c,
      but it turns out the read path did not, and removing the block size
      checks in fs/block_dev.c (commit bbec0270: "blkdev_max_block: make
      private to fs/buffer.c") removed the magic "shrink IO to past the end of
      the device" code there.
      
      Fix it by truncating the IO to the size of the block device, like the
      write path already does.
      
      NOTE! I suspect the write path would be *much* better off doing it this
      way in fs/block_dev.c, rather than hidden deep in mm/filemap.c.  The
      mm/filemap.c code is extremely hard to follow, and has various
      conditionals on the target being a block device (ie the flag passed in
      to 'generic_write_checks()', along with a conditional update of the
      inode timestamp etc).
      
      It is also quite possible that we should treat this whole block device
      size as a "s_maxbytes" issue, and try to make the logic even more
      generic.  However, in the meantime this is the fairly minimal targeted
      fix.
      
      Noted by Milan Broz thanks to a regression test for the cryptsetup
      reencrypt tool.
      Reported-and-tested-by: NMilan Broz <mbroz@redhat.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      684c9aae
  3. 06 12月, 2012 1 次提交
  4. 05 12月, 2012 1 次提交
    • L
      vfs: avoid "attempt to access beyond end of device" warnings · 57302e0d
      Linus Torvalds 提交于
      The block device access simplification that avoided accessing the (racy)
      block size information (commit bbec0270: "blkdev_max_block: make
      private to fs/buffer.c") no longer checks the maximum block size in the
      block mapping path.
      
      That was _almost_ as simple as just removing the code entirely, because
      the readers and writers all check the size of the device anyway, so
      under normal circumstances it "just worked".
      
      However, the block size may be such that the end of the device may
      straddle one single buffer_head.  At which point we may still want to
      access the end of the device, but the buffer we use to access it
      partially extends past the end.
      
      The 'bd_set_size()' function intentionally sets the block size to avoid
      this, but mounting the device - or setting the block size by hand to
      some other value - can modify that block size.
      
      So instead, teach 'submit_bh()' about the special case of the buffer
      head straddling the end of the device, and turning such an access into a
      smaller IO access, avoiding the problem.
      
      This, btw, also means that unlike before, we can now access the whole
      device regardless of device block size setting.  So now, even if the
      device size is only 512-byte aligned, we can read and write even the
      last sector even when having a much bigger block size for accessing the
      rest of the device.
      
      So with this, we could now get rid of the 'bd_set_size()' block size
      code entirely - resulting in faster IO for the common case - but that
      would be a separate patch.
      Reported-and-tested-by: NRomain Francoise <romain@orebokech.com>
      Reporeted-and-tested-by: NMeelis Roos <mroos@linux.ee>
      Reported-by: NTony Luck <tony.luck@intel.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      57302e0d
  5. 30 11月, 2012 9 次提交
  6. 29 11月, 2012 1 次提交
  7. 28 11月, 2012 1 次提交
  8. 27 11月, 2012 2 次提交
    • J
      writeback: put unused inodes to LRU after writeback completion · 4eff96dd
      Jan Kara 提交于
      Commit 169ebd90 ("writeback: Avoid iput() from flusher thread")
      removed iget-iput pair from inode writeback.  As a side effect, inodes
      that are dirty during iput_final() call won't be ever added to inode LRU
      (iput_final() doesn't add dirty inodes to LRU and later when the inode
      is cleaned there's noone to add the inode there).  Thus inodes are
      effectively unreclaimable until someone looks them up again.
      
      The practical effect of this bug is limited by the fact that inodes are
      pinned by a dentry for long enough that the inode gets cleaned.  But
      still the bug can have nasty consequences leading up to OOM conditions
      under certain circumstances.  Following can easily reproduce the
      problem:
      
        for (( i = 0; i < 1000; i++ )); do
          mkdir $i
          for (( j = 0; j < 1000; j++ )); do
            touch $i/$j
            echo 2 > /proc/sys/vm/drop_caches
          done
        done
      
      then one needs to run 'sync; ls -lR' to make inodes reclaimable again.
      
      We fix the issue by inserting unused clean inodes into the LRU after
      writeback finishes in inode_sync_complete().
      Signed-off-by: NJan Kara <jack@suse.cz>
      Reported-by: NOGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: <stable@vger.kernel.org>		[3.5+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4eff96dd
    • S
      proc: check vma->vm_file before dereferencing · 05f56484
      Stanislav Kinsbursky 提交于
      Commit 7b540d06 ("proc_map_files_readdir(): don't bother with
      grabbing files") switched proc_map_files_readdir() to use @f_mode
      directly instead of grabbing @file reference, but same time the test for
      @vm_file presence was lost leading to nil dereference.  The patch brings
      the test back.
      
      The all proc_map_files feature is CONFIG_CHECKPOINT_RESTORE wrapped
      (which is set to 'n' by default) so the bug doesn't affect regular
      kernels.
      
      The regression is 3.7-rc1 only as far as I can tell.
      
      [gorcunov@openvz.org: provided changelog]
      Signed-off-by: NStanislav Kinsbursky <skinsbursky@parallels.com>
      Acked-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      05f56484
  9. 23 11月, 2012 1 次提交
    • J
      jbd: Fix lock ordering bug in journal_unmap_buffer() · 25389bb2
      Jan Kara 提交于
      Commit 09e05d48 introduced a wait for transaction commit into
      journal_unmap_buffer() in the case we are truncating a buffer undergoing commit
      in the page stradding i_size on a filesystem with blocksize < pagesize. Sadly
      we forgot to drop buffer lock before waiting for transaction commit and thus
      deadlock is possible when kjournald wants to lock the buffer.
      
      Fix the problem by dropping the buffer lock before waiting for transaction
      commit. Since we are still holding page lock (and that is OK), buffer cannot
      disappear under us.
      
      CC: stable@vger.kernel.org # Wherever commit 09e05d48 was taken
      Signed-off-by: NJan Kara <jack@suse.cz>
      25389bb2
  10. 20 11月, 2012 5 次提交
  11. 19 11月, 2012 1 次提交
  12. 17 11月, 2012 4 次提交
    • D
      xfs: drop buffer io reference when a bad bio is built · d69043c4
      Dave Chinner 提交于
      Error handling in xfs_buf_ioapply_map() does not handle IO reference
      counts correctly. We increment the b_io_remaining count before
      building the bio, but then fail to decrement it in the failure case.
      This leads to the buffer never running IO completion and releasing
      the reference that the IO holds, so at unmount we can leak the
      buffer. This leak is captured by this assert failure during unmount:
      
      XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 273
      
      This is not a new bug - the b_io_remaining accounting has had this
      problem for a long, long time - it's just very hard to get a
      zero length bio being built by this code...
      
      Further, the buffer IO error can be overwritten on a multi-segment
      buffer by subsequent bio completions for partial sections of the
      buffer. Hence we should only set the buffer error status if the
      buffer is not already carrying an error status. This ensures that a
      partial IO error on a multi-segment buffer will not be lost. This
      part of the problem is a regression, however.
      
      cc: <stable@vger.kernel.org>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      d69043c4
    • D
      xfs: fix broken error handling in xfs_vm_writepage · 3daed8bc
      Dave Chinner 提交于
      When we shut down the filesystem, it might first be detected in
      writeback when we are allocating a inode size transaction. This
      happens after we have moved all the pages into the writeback state
      and unlocked them. Unfortunately, if we fail to set up the
      transaction we then abort writeback and try to invalidate the
      current page. This then triggers are BUG() in block_invalidatepage()
      because we are trying to invalidate an unlocked page.
      
      Fixing this is a bit of a chicken and egg problem - we can't
      allocate the transaction until we've clustered all the pages into
      the IO and we know the size of it (i.e. whether the last block of
      the IO is beyond the current EOF or not). However, we don't want to
      hold pages locked for long periods of time, especially while we lock
      other pages to cluster them into the write.
      
      To fix this, we need to make a clear delineation in writeback where
      errors can only be handled by IO completion processing. That is,
      once we have marked a page for writeback and unlocked it, we have to
      report errors via IO completion because we've already started the
      IO. We may not have submitted any IO, but we've changed the page
      state to indicate that it is under IO so we must now use the IO
      completion path to report errors.
      
      To do this, add an error field to xfs_submit_ioend() to pass it the
      error that occurred during the building on the ioend chain. When
      this is non-zero, mark each ioend with the error and call
      xfs_finish_ioend() directly rather than building bios. This will
      immediately push the ioends through completion processing with the
      error that has occurred.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      3daed8bc
    • D
      xfs: fix attr tree double split corruption · 42e2976f
      Dave Chinner 提交于
      In certain circumstances, a double split of an attribute tree is
      needed to insert or replace an attribute. In rare situations, this
      can go wrong, leaving the attribute tree corrupted. In this case,
      the attr being replaced is the last attr in a leaf node, and the
      replacement is larger so doesn't fit in the same leaf node.
      When we have the initial condition of a node format attribute
      btree with two leaves at index 1 and 2. Call them L1 and L2.  The
      leaf L1 is completely full, there is not a single byte of free space
      in it. L2 is mostly empty.  The attribute being replaced - call it X
      - is the last attribute in L1.
      
      The way an attribute replace is executed is that the replacement
      attribute - call it Y - is first inserted into the tree, but has an
      INCOMPLETE flag set on it so that list traversals ignore it. Once
      this transaction is committed, a second transaction it run to
      atomically mark Y as COMPLETE and X as INCOMPLETE, so that a
      traversal will now find Y and skip X. Once that transaction is
      committed, attribute X is then removed.
      
      So, the initial condition is:
      
           +--------+     +--------+
           |   L1   |     |   L2   |
           | fwd: 2 |---->| fwd: 0 |
           | bwd: 0 |<----| bwd: 1 |
           | fsp: 0 |     | fsp: N |
           |--------|     |--------|
           | attr A |     | attr 1 |
           |--------|     |--------|
           | attr B |     | attr 2 |
           |--------|     |--------|
           ..........     ..........
           |--------|     |--------|
           | attr X |     | attr n |
           +--------+     +--------+
      
      So now we go to replace X, and see that L1:fsp = 0 - it is full so
      we can't insert Y in the same leaf. So we record the the location of
      attribute X so we can track it for later use, then we split L1 into
      L1 and L3 and reblance across the two leafs. We end with:
      
           +--------+     +--------+     +--------+
           |   L1   |     |   L3   |     |   L2   |
           | fwd: 3 |---->| fwd: 2 |---->| fwd: 0 |
           | bwd: 0 |<----| bwd: 1 |<----| bwd: 3 |
           | fsp: M |     | fsp: J |     | fsp: N |
           |--------|     |--------|     |--------|
           | attr A |     | attr X |     | attr 1 |
           |--------|     +--------+     |--------|
           | attr B |                    | attr 2 |
           |--------|                    |--------|
           ..........                    ..........
           |--------|                    |--------|
           | attr W |                    | attr n |
           +--------+                    +--------+
      
      And we track that the original attribute is now at L3:0.
      
      We then try to insert Y into L1 again, and find that there isn't
      enough room because the new attribute is larger than the old one.
      Hence we have to split again to make room for Y. We end up with
      this:
      
           +--------+     +--------+     +--------+     +--------+
           |   L1   |     |   L4   |     |   L3   |     |   L2   |
           | fwd: 4 |---->| fwd: 3 |---->| fwd: 2 |---->| fwd: 0 |
           | bwd: 0 |<----| bwd: 1 |<----| bwd: 4 |<----| bwd: 3 |
           | fsp: M |     | fsp: J |     | fsp: J |     | fsp: N |
           |--------|     |--------|     |--------|     |--------|
           | attr A |     | attr Y |     | attr X |     | attr 1 |
           |--------|     + INCOMP +     +--------+     |--------|
           | attr B |     +--------+                    | attr 2 |
           |--------|                                   |--------|
           ..........                                   ..........
           |--------|                                   |--------|
           | attr W |                                   | attr n |
           +--------+                                   +--------+
      
      And now we have the new (incomplete) attribute @ L4:0, and the
      original attribute at L3:0. At this point, the first transaction is
      committed, and we move to the flipping of the flags.
      
      This is where we are supposed to end up with this:
      
           +--------+     +--------+     +--------+     +--------+
           |   L1   |     |   L4   |     |   L3   |     |   L2   |
           | fwd: 4 |---->| fwd: 3 |---->| fwd: 2 |---->| fwd: 0 |
           | bwd: 0 |<----| bwd: 1 |<----| bwd: 4 |<----| bwd: 3 |
           | fsp: M |     | fsp: J |     | fsp: J |     | fsp: N |
           |--------|     |--------|     |--------|     |--------|
           | attr A |     | attr Y |     | attr X |     | attr 1 |
           |--------|     +--------+     + INCOMP +     |--------|
           | attr B |                    +--------+     | attr 2 |
           |--------|                                   |--------|
           ..........                                   ..........
           |--------|                                   |--------|
           | attr W |                                   | attr n |
           +--------+                                   +--------+
      
      But that doesn't happen properly - the attribute tracking indexes
      are not pointing to the right locations. What we end up with is both
      the old attribute to be removed pointing at L4:0 and the new
      attribute at L4:1.  On a debug kernel, this assert fails like so:
      
      XFS: Assertion failed: args->index2 < be16_to_cpu(leaf2->hdr.count), file: fs/xfs/xfs_attr_leaf.c, line: 2725
      
      because the new attribute location does not exist. On a production
      kernel, this goes unnoticed and the code proceeds ahead merrily and
      removes L4 because it thinks that is the block that is no longer
      needed. This leaves the hash index node pointing to entries
      L1, L4 and L2, but only blocks L1, L3 and L2 to exist. Further, the
      leaf level sibling list is L1 <-> L4 <-> L2, but L4 is now free
      space, and so everything is busted. This corruption is caused by the
      removal of the old attribute triggering a join - it joins everything
      correctly but then frees the wrong block.
      
      xfs_repair will report something like:
      
      bad sibling back pointer for block 4 in attribute fork for inode 131
      problem with attribute contents in inode 131
      would clear attr fork
      bad nblocks 8 for inode 131, would reset to 3
      bad anextents 4 for inode 131, would reset to 0
      
      The problem lies in the assignment of the old/new blocks for
      tracking purposes when the double leaf split occurs. The first split
      tries to place the new attribute inside the current leaf (i.e.
      "inleaf == true") and moves the old attribute (X) to the new block.
      This sets up the old block/index to L1:X, and newly allocated
      block to L3:0. It then moves attr X to the new block and tries to
      insert attr Y at the old index. That fails, so it splits again.
      
      With the second split, the rebalance ends up placing the new attr in
      the second new block - L4:0 - and this is where the code goes wrong.
      What is does is it sets both the new and old block index to the
      second new block. Hence it inserts attr Y at the right place (L4:0)
      but overwrites the current location of the attr to replace that is
      held in the new block index (currently L3:0). It over writes it with
      L4:1 - the index we later assert fail on.
      
      Hopefully this table will show this in a foramt that is a bit easier
      to understand:
      
      Split		old attr index		new attr index
      		vanilla	patched		vanilla	patched
      before 1st	L1:26	L1:26		N/A	N/A
      after 1st	L3:0	L3:0		L1:26	L1:26
      after 2nd	L4:0	L3:0		L4:1	L4:0
                      ^^^^			^^^^
      		wrong			wrong
      
      The fix is surprisingly simple, for all this analysis - just stop
      the rebalance on the out-of leaf case from overwriting the new attr
      index - it's already correct for the double split case.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      42e2976f
    • D
      mm, oom: reintroduce /proc/pid/oom_adj · fa0cbbf1
      David Rientjes 提交于
      This is mostly a revert of 01dc52eb ("oom: remove deprecated oom_adj")
      from Davidlohr Bueso.
      
      It reintroduces /proc/pid/oom_adj for backwards compatibility with earlier
      kernels.  It simply scales the value linearly when /proc/pid/oom_score_adj
      is written.
      
      The major difference is that its scheduled removal is no longer included
      in Documentation/feature-removal-schedule.txt.  We do warn users with a
      single printk, though, to suggest the more powerful and supported
      /proc/pid/oom_score_adj interface.
      Reported-by: NArtem S. Tashkinov <t.artem@lycos.com>
      Signed-off-by: NDavid Rientjes <rientjes@google.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fa0cbbf1
  13. 15 11月, 2012 1 次提交
  14. 12 11月, 2012 1 次提交
  15. 09 11月, 2012 9 次提交
    • T
      jffs2: Fix lock acquisition order bug in jffs2_write_begin · 5ffd3412
      Thomas Betker 提交于
      jffs2_write_begin() first acquires the page lock, then f->sem. This
      causes an AB-BA deadlock with jffs2_garbage_collect_live(), which first
      acquires f->sem, then the page lock:
      
      jffs2_garbage_collect_live
          mutex_lock(&f->sem)                         (A)
          jffs2_garbage_collect_dnode
              jffs2_gc_fetch_page
                  read_cache_page_async
                      do_read_cache_page
                          lock_page(page)             (B)
      
      jffs2_write_begin
          grab_cache_page_write_begin
              find_lock_page
                  lock_page(page)                     (B)
          mutex_lock(&f->sem)                         (A)
      
      We fix this by restructuring jffs2_write_begin() to take f->sem before
      the page lock. However, we make sure that f->sem is not held when
      calling jffs2_reserve_space(), as this is not permitted by the locking
      rules.
      
      The deadlock above was observed multiple times on an SoC with a dual
      ARMv7 (Cortex-A9), running the long-term 3.4.11 kernel; it occurred
      when using scp to copy files from a host system to the ARM target
      system. The fix was heavily tested on the same target system.
      
      Cc: stable@vger.kernel.org
      Signed-off-by: NThomas Betker <thomas.betker@rohde-schwarz.com>
      Acked-by: NJoakim Tjernlund <Joakim.Tjernlund@transmode.se>
      Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
      5ffd3412
    • E
      fanotify: fix missing break · 848561d3
      Eric Paris 提交于
      Anders Blomdell noted in 2010 that Fanotify lost events and provided a
      test case.  Eric Paris confirmed it was a bug and posted a fix to the
      list
      
        https://groups.google.com/forum/?fromgroups=#!topic/linux.kernel/RrJfTfyW2BE
      
      but never applied it.  Repeated attempts over time to actually get him
      to apply it have never had a reply from anyone who has raised it
      
      So apply it anyway
      Signed-off-by: NAlan Cox <alan@linux.intel.com>
      Reported-by: NAnders Blomdell <anders.blomdell@control.lth.se>
      Cc: Eric Paris <eparis@redhat.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      848561d3
    • A
      revert "epoll: support for disabling items, and a self-test app" · a80a6b85
      Andrew Morton 提交于
      Revert commit 03a7beb5 ("epoll: support for disabling items, and a
      self-test app") pending resolution of the issues identified by Michael
      Kerrisk, copied below.
      
      We'll revisit this for 3.8.
      
      : I've taken a look at this patch as it currently stands in 3.7-rc1, and
      : done a bit of testing. (By the way, the test program
      : tools/testing/selftests/epoll/test_epoll.c does not compile...)
      :
      : There are one or two places where the behavior seems a little strange,
      : so I have a question or two at the end of this mail. But other than
      : that, I want to check my understanding so that the interface can be
      : correctly documented.
      :
      : Just to go though my understanding, the problem is the following
      : scenario in a multithreaded application:
      :
      : 1. Multiple threads are performing epoll_wait() operations,
      :    and maintaining a user-space cache that contains information
      :    corresponding to each file descriptor being monitored by
      :    epoll_wait().
      :
      : 2. At some point, a thread wants to delete (EPOLL_CTL_DEL)
      :    a file descriptor from the epoll interest list, and
      :    delete the corresponding record from the user-space cache.
      :
      : 3. The problem with (2) is that some other thread may have
      :    previously done an epoll_wait() that retrieved information
      :    about the fd in question, and may be in the middle of using
      :    information in the cache that relates to that fd. Thus,
      :    there is a potential race.
      :
      : 4. The race can't solved purely in user space, because doing
      :    so would require applying a mutex across the epoll_wait()
      :    call, which would of course blow thread concurrency.
      :
      : Right?
      :
      : Your solution is the EPOLL_CTL_DISABLE operation. I want to
      : confirm my understanding about how to use this flag, since
      : the description that has accompanied the patches so far
      : has been a bit sparse
      :
      : 0. In the scenario you're concerned about, deleting a file
      :    descriptor means (safely) doing the following:
      :    (a) Deleting the file descriptor from the epoll interest list
      :        using EPOLL_CTL_DEL
      :    (b) Deleting the corresponding record in the user-space cache
      :
      : 1. It's only meaningful to use this EPOLL_CTL_DISABLE in
      :    conjunction with EPOLLONESHOT.
      :
      : 2. Using EPOLL_CTL_DISABLE without using EPOLLONESHOT in
      :    conjunction is a logical error.
      :
      : 3. The correct way to code multithreaded applications using
      :    EPOLL_CTL_DISABLE and EPOLLONESHOT is as follows:
      :
      :    a. All EPOLL_CTL_ADD and EPOLL_CTL_MOD operations should
      :       should EPOLLONESHOT.
      :
      :    b. When a thread wants to delete a file descriptor, it
      :       should do the following:
      :
      :       [1] Call epoll_ctl(EPOLL_CTL_DISABLE)
      :       [2] If the return status from epoll_ctl(EPOLL_CTL_DISABLE)
      :           was zero, then the file descriptor can be safely
      :           deleted by the thread that made this call.
      :       [3] If the epoll_ctl(EPOLL_CTL_DISABLE) fails with EBUSY,
      :           then the descriptor is in use. In this case, the calling
      :           thread should set a flag in the user-space cache to
      :           indicate that the thread that is using the descriptor
      :           should perform the deletion operation.
      :
      : Is all of the above correct?
      :
      : The implementation depends on checking on whether
      : (events & ~EP_PRIVATE_BITS) == 0
      : This replies on the fact that EPOLL_CTL_AD and EPOLL_CTL_MOD always
      : set EPOLLHUP and EPOLLERR in the 'events' mask, and EPOLLONESHOT
      : causes those flags (as well as all others in ~EP_PRIVATE_BITS) to be
      : cleared.
      :
      : A corollary to the previous paragraph is that using EPOLL_CTL_DISABLE
      : is only useful in conjunction with EPOLLONESHOT. However, as things
      : stand, one can use EPOLL_CTL_DISABLE on a file descriptor that does
      : not have EPOLLONESHOT set in 'events' This results in the following
      : (slightly surprising) behavior:
      :
      : (a) The first call to epoll_ctl(EPOLL_CTL_DISABLE) returns 0
      :     (the indicator that the file descriptor can be safely deleted).
      : (b) The next call to epoll_ctl(EPOLL_CTL_DISABLE) fails with EBUSY.
      :
      : This doesn't seem particularly useful, and in fact is probably an
      : indication that the user made a logic error: they should only be using
      : epoll_ctl(EPOLL_CTL_DISABLE) on a file descriptor for which
      : EPOLLONESHOT was set in 'events'. If that is correct, then would it
      : not make sense to return an error to user space for this case?
      
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: "Paton J. Lewis" <palewis@adobe.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a80a6b85
    • D
      xfs: fix reading of wrapped log data · 6ce377af
      Dave Chinner 提交于
      Commit 44396476 ("xfs: reset buffer pointers before freeing them") in
      3.0-rc1 introduced a regression when recovering log buffers that
      wrapped around the end of log. The second part of the log buffer at
      the start of the physical log was being read into the header buffer
      rather than the data buffer, and hence recovery was seeing garbage
      in the data buffer when it got to the region of the log buffer that
      was incorrectly read.
      
      Cc: <stable@vger.kernel.org> # 3.0.x, 3.2.x, 3.4.x 3.6.x
      Reported-by: NTorsten Kaiser <just.for.lkml@googlemail.com>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      6ce377af
    • D
      xfs: fix buffer shudown reference count mismatch · 03b1293e
      Dave Chinner 提交于
      When we shut down the filesystem, we have to unpin and free all the
      buffers currently active in the CIL. To do this we unpin and remove
      them in one operation as a result of a failed iclogbuf write. For
      buffers, we do this removal via a simultated IO completion of after
      marking the buffer stale.
      
      At the time we do this, we have two references to the buffer - the
      active LRU reference and the buf log item.  The LRU reference is
      removed by marking the buffer stale, and the active CIL reference is
      by the xfs_buf_iodone() callback that is run by
      xfs_buf_do_callbacks() during ioend processing (via the bp->b_iodone
      callback).
      
      However, ioend processing requires one more reference - that of the
      IO that it is completing. We don't have this reference, so we free
      the buffer prematurely and use it after it is freed. For buffers
      marked with XBF_ASYNC, this leads to assert failures in
      xfs_buf_rele() on debug kernels because the b_hold count is zero.
      
      Fix this by making sure we take the necessary IO reference before
      starting IO completion processing on the stale buffer, and set the
      XBF_ASYNC flag to ensure that IO completion processing removes all
      the active references from the buffer to ensure it is fully torn
      down.
      
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      03b1293e
    • D
      xfs: don't vmap inode cluster buffers during free · 4b62acfe
      Dave Chinner 提交于
      Inode buffers do not need to be mapped as inodes are read or written
      directly from/to the pages underlying the buffer. This fixes a
      regression introduced by commit 611c9946 ("xfs: make XBF_MAPPED the
      default behaviour").
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      4b62acfe
    • D
      xfs: invalidate allocbt blocks moved to the free list · ca250b1b
      Dave Chinner 提交于
      When we free a block from the alloc btree tree, we move it to the
      freelist held in the AGFL and mark it busy in the busy extent tree.
      This typically happens when we merge btree blocks.
      
      Once the transaction is committed and checkpointed, the block can
      remain on the free list for an indefinite amount of time.  Now, this
      isn't the end of the world at this point - if the free list is
      shortened, the buffer is invalidated in the transaction that moves
      it back to free space. If the buffer is allocated as metadata from
      the free list, then all the modifications getted logged, and we have
      no issues, either. And if it gets allocated as userdata direct from
      the freelist, it gets invalidated and so will never get written.
      
      However, during the time it sits on the free list, pressure on the
      log can cause the AIL to be pushed and the buffer that covers the
      block gets pushed for write. IOWs, we end up writing a freed
      metadata block to disk. Again, this isn't the end of the world
      because we know from the above we are only writing to free space.
      
      The problem, however, is for validation callbacks. If the block was
      on old btree root block, then the level of the block is going to be
      higher than the current tree root, and so will fail validation.
      There may be other inconsistencies in the block as well, and
      currently we don't care because the block is in free space. Shutting
      down the filesystem because a freed block doesn't pass write
      validation, OTOH, is rather unfriendly.
      
      So, make sure we always invalidate buffers as they move from the
      free space trees to the free list so that we guarantee they never
      get written to disk while on the free list.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NPhil White <pwhite@sgi.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      ca250b1b
    • D
      xfs: silence uninitialised f.file warning. · 1e7acbb7
      Dave Chinner 提交于
      Uninitialised variable build warning introduced by 2903ff01 ("switch
      simple cases of fget_light to fdget"), gcc is not smart enough to
      work out that the variable is not used uninitialised, and the commit
      removed the initialisation at declaration that the old variable had.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      1e7acbb7
    • D
      xfs: growfs: don't read garbage for new secondary superblocks · eaef8543
      Dave Chinner 提交于
      When updating new secondary superblocks in a growfs operation, the
      superblock buffer is read from the newly grown region of the
      underlying device. This is not guaranteed to be zero, so violates
      the underlying assumption that the unused parts of superblocks are
      zero filled. Get a new buffer for these secondary superblocks to
      ensure that the unused regions are zero filled correctly.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      eaef8543