1. 19 12月, 2012 11 次提交
    • G
      memcg: allocate memory for memcg caches whenever a new memcg appears · 55007d84
      Glauber Costa 提交于
      Every cache that is considered a root cache (basically the "original"
      caches, tied to the root memcg/no-memcg) will have an array that should be
      large enough to store a cache pointer per each memcg in the system.
      
      Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently
      in the 64k pointers range.  Most of the time, we won't be using that much.
      
      What goes in this patch, is a simple scheme to dynamically allocate such
      an array, in order to minimize memory usage for memcg caches.  Because we
      would also like to avoid allocations all the time, at least for now, the
      array will only grow.  It will tend to be big enough to hold the maximum
      number of kmem-limited memcgs ever achieved.
      
      We'll allocate it to be a minimum of 64 kmem-limited memcgs.  When we have
      more than that, we'll start doubling the size of this array every time the
      limit is reached.
      
      Because we are only considering kmem limited memcgs, a natural point for
      this to happen is when we write to the limit.  At that point, we already
      have set_limit_mutex held, so that will become our natural synchronization
      mechanism.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      55007d84
    • G
      slab/slub: consider a memcg parameter in kmem_create_cache · 2633d7a0
      Glauber Costa 提交于
      Allow a memcg parameter to be passed during cache creation.  When the slub
      allocator is being used, it will only merge caches that belong to the same
      memcg.  We'll do this by scanning the global list, and then translating
      the cache to a memcg-specific cache
      
      Default function is created as a wrapper, passing NULL to the memcg
      version.  We only merge caches that belong to the same memcg.
      
      A helper is provided, memcg_css_id: because slub needs a unique cache name
      for sysfs.  Since this is visible, but not the canonical location for slab
      data, the cache name is not used, the css_id should suffice.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2633d7a0
    • G
      memcg: execute the whole memcg freeing in free_worker() · c8b2a36f
      Glauber Costa 提交于
      A lot of the initialization we do in mem_cgroup_create() is done with
      softirqs enabled.  This include grabbing a css id, which holds
      &ss->id_lock->rlock, and the per-zone trees, which holds
      rtpz->lock->rlock.  All of those signal to the lockdep mechanism that
      those locks can be used in SOFTIRQ-ON-W context.
      
      This means that the freeing of memcg structure must happen in a
      compatible context, otherwise we'll get a deadlock, like the one below,
      caught by lockdep:
      
         free_accounted_pages+0x47/0x4c
         free_task+0x31/0x5c
         __put_task_struct+0xc2/0xdb
         put_task_struct+0x1e/0x22
         delayed_put_task_struct+0x7a/0x98
         __rcu_process_callbacks+0x269/0x3df
         rcu_process_callbacks+0x31/0x5b
         __do_softirq+0x122/0x277
      
      This usage pattern could not be triggered before kmem came into play.
      With the introduction of kmem stack handling, it is possible that we call
      the last mem_cgroup_put() from the task destructor, which is run in an rcu
      callback.  Such callbacks are run with softirqs disabled, leading to the
      offensive usage pattern.
      
      In general, we have little, if any, means to guarantee in which context
      the last memcg_put will happen.  The best we can do is test it and try to
      make sure no invalid context releases are happening.  But as we add more
      code to memcg, the possible interactions grow in number and expose more
      ways to get context conflicts.  One thing to keep in mind, is that part of
      the freeing process is already deferred to a worker, such as vfree(), that
      can only be called from process context.
      
      For the moment, the only two functions we really need moved away are:
      
        * free_css_id(), and
        * mem_cgroup_remove_from_trees().
      
      But because the later accesses per-zone info,
      free_mem_cgroup_per_zone_info() needs to be moved as well.  With that, we
      are left with the per_cpu stats only.  Better move it all.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Tested-by: NGreg Thelen <gthelen@google.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c8b2a36f
    • G
      memcg: allow a memcg with kmem charges to be destructed · bea207c8
      Glauber Costa 提交于
      Because the ultimate goal of the kmem tracking in memcg is to track slab
      pages as well, we can't guarantee that we'll always be able to point a
      page to a particular process, and migrate the charges along with it -
      since in the common case, a page will contain data belonging to multiple
      processes.
      
      Because of that, when we destroy a memcg, we only make sure the
      destruction will succeed by discounting the kmem charges from the user
      charges when we try to empty the cgroup.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bea207c8
    • G
      memcg: use static branches when code not in use · a8964b9b
      Glauber Costa 提交于
      We can use static branches to patch the code in or out when not used.
      
      Because the _ACTIVE bit on kmem_accounted is only set after the increment
      is done, we guarantee that the root memcg will always be selected for kmem
      charges until all call sites are patched (see memcg_kmem_enabled).  This
      guarantees that no mischarges are applied.
      
      Static branch decrement happens when the last reference count from the
      kmem accounting in memcg dies.  This will only happen when the charges
      drop down to 0.
      
      When that happens, we need to disable the static branch only on those
      memcgs that enabled it.  To achieve this, we would be forced to complicate
      the code by keeping track of which memcgs were the ones that actually
      enabled limits, and which ones got it from its parents.
      
      It is a lot simpler just to do static_key_slow_inc() on every child
      that is accounted.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a8964b9b
    • G
      memcg: kmem accounting lifecycle management · 7de37682
      Glauber Costa 提交于
      Because kmem charges can outlive the cgroup, we need to make sure that we
      won't free the memcg structure while charges are still in flight.  For
      reviewing simplicity, the charge functions will issue mem_cgroup_get() at
      every charge, and mem_cgroup_put() at every uncharge.
      
      This can get expensive, however, and we can do better.  mem_cgroup_get()
      only really needs to be issued once: when the first limit is set.  In the
      same spirit, we only need to issue mem_cgroup_put() when the last charge
      is gone.
      
      We'll need an extra bit in kmem_account_flags for that:
      KMEM_ACCOUNTED_DEAD.  it will be set when the cgroup dies, if there are
      charges in the group.  If there aren't, we can proceed right away.
      
      Our uncharge function will have to test that bit every time the charges
      drop to 0.  Because that is not the likely output of res_counter_uncharge,
      this should not impose a big hit on us: it is certainly much better than a
      reference count decrease at every operation.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7de37682
    • G
      memcg: kmem controller infrastructure · 7ae1e1d0
      Glauber Costa 提交于
      Introduce infrastructure for tracking kernel memory pages to a given
      memcg.  This will happen whenever the caller includes the flag
      __GFP_KMEMCG flag, and the task belong to a memcg other than the root.
      
      In memcontrol.h those functions are wrapped in inline acessors.  The idea
      is to later on, patch those with static branches, so we don't incur any
      overhead when no mem cgroups with limited kmem are being used.
      
      Users of this functionality shall interact with the memcg core code
      through the following functions:
      
      memcg_kmem_newpage_charge: will return true if the group can handle the
                                 allocation. At this point, struct page is not
                                 yet allocated.
      
      memcg_kmem_commit_charge: will either revert the charge, if struct page
                                allocation failed, or embed memcg information
                                into page_cgroup.
      
      memcg_kmem_uncharge_page: called at free time, will revert the charge.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7ae1e1d0
    • G
      memcg: kmem accounting basic infrastructure · 510fc4e1
      Glauber Costa 提交于
      Add the basic infrastructure for the accounting of kernel memory.  To
      control that, the following files are created:
      
       * memory.kmem.usage_in_bytes
       * memory.kmem.limit_in_bytes
       * memory.kmem.failcnt
       * memory.kmem.max_usage_in_bytes
      
      They have the same meaning of their user memory counterparts.  They
      reflect the state of the "kmem" res_counter.
      
      Per cgroup kmem memory accounting is not enabled until a limit is set for
      the group.  Once the limit is set the accounting cannot be disabled for
      that group.  This means that after the patch is applied, no behavioral
      changes exists for whoever is still using memcg to control their memory
      usage, until memory.kmem.limit_in_bytes is set for the first time.
      
      We always account to both user and kernel resource_counters.  This
      effectively means that an independent kernel limit is in place when the
      limit is set to a lower value than the user memory.  A equal or higher
      value means that the user limit will always hit first, meaning that kmem
      is effectively unlimited.
      
      People who want to track kernel memory but not limit it, can set this
      limit to a very high number (like RESOURCE_MAX - 1page - that no one will
      ever hit, or equal to the user memory)
      
      [akpm@linux-foundation.org: MEMCG_MMEM only works with slab and slub]
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      510fc4e1
    • G
      memcg: change defines to an enum · 86ae53e1
      Glauber Costa 提交于
      This is just a cleanup patch for clarity of expression.  In earlier
      submissions, people asked it to be in a separate patch, so here it is.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      86ae53e1
    • S
      memcg: reclaim when more than one page needed · 4c9c5359
      Suleiman Souhlal 提交于
      mem_cgroup_do_charge() was written before kmem accounting, and expects
      three cases: being called for 1 page, being called for a stock of 32
      pages, or being called for a hugepage.  If we call for 2 or 3 pages (and
      both the stack and several slabs used in process creation are such, at
      least with the debug options I had), it assumed it's being called for
      stock and just retried without reclaiming.
      
      Fix that by passing down a minsize argument in addition to the csize.
      
      And what to do about that (csize == PAGE_SIZE && ret) retry?  If it's
      needed at all (and presumably is since it's there, perhaps to handle
      races), then it should be extended to more than PAGE_SIZE, yet how far?
      And should there be a retry count limit, of what?  For now retry up to
      COSTLY_ORDER (as page_alloc.c does) and make sure not to do it if
      __GFP_NORETRY.
      
      v4: fixed nr pages calculation pointed out by Christoph Lameter.
      Signed-off-by: NSuleiman Souhlal <suleiman@google.com>
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4c9c5359
    • S
      memcg: make it possible to use the stock for more than one page · a0956d54
      Suleiman Souhlal 提交于
      We currently have a percpu stock cache scheme that charges one page at a
      time from memcg->res, the user counter.  When the kernel memory controller
      comes into play, we'll need to charge more than that.
      
      This is because kernel memory allocations will also draw from the user
      counter, and can be bigger than a single page, as it is the case with the
      stack (usually 2 pages) or some higher order slabs.
      
      [glommer@parallels.com: added a changelog ]
      Signed-off-by: NSuleiman Souhlal <suleiman@google.com>
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a0956d54
  2. 13 12月, 2012 3 次提交
  3. 12 12月, 2012 1 次提交
  4. 11 12月, 2012 1 次提交
    • M
      mm: numa: Add THP migration for the NUMA working set scanning fault case. · b32967ff
      Mel Gorman 提交于
      Note: This is very heavily based on a patch from Peter Zijlstra with
      	fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner.  That patch
      	put a lot of migration logic into mm/huge_memory.c where it does
      	not belong. This version puts tries to share some of the migration
      	logic with migrate_misplaced_page.  However, it should be noted
      	that now migrate.c is doing more with the pagetable manipulation
      	than is preferred. The end result is barely recognisable so as
      	before, the signed-offs had to be removed but will be re-added if
      	the original authors are ok with it.
      
      Add THP migration for the NUMA working set scanning fault case.
      
      It uses the page lock to serialize. No migration pte dance is
      necessary because the pte is already unmapped when we decide
      to migrate.
      
      [dhillf@gmail.com: Fix memory leak on isolation failure]
      [dhillf@gmail.com: Fix transfer of last_nid information]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      b32967ff
  5. 20 11月, 2012 1 次提交
  6. 17 11月, 2012 2 次提交
    • H
      memcg: fix hotplugged memory zone oops · bea8c150
      Hugh Dickins 提交于
      When MEMCG is configured on (even when it's disabled by boot option),
      when adding or removing a page to/from its lru list, the zone pointer
      used for stats updates is nowadays taken from the struct lruvec.  (On
      many configurations, calculating zone from page is slower.)
      
      But we have no code to update all the lruvecs (per zone, per memcg) when
      a memory node is hotadded.  Here's an extract from the oops which
      results when running numactl to bind a program to a newly onlined node:
      
        BUG: unable to handle kernel NULL pointer dereference at 0000000000000f60
        IP:  __mod_zone_page_state+0x9/0x60
        Pid: 1219, comm: numactl Not tainted 3.6.0-rc5+ #180 Bochs Bochs
        Process numactl (pid: 1219, threadinfo ffff880039abc000, task ffff8800383c4ce0)
        Call Trace:
          __pagevec_lru_add_fn+0xdf/0x140
          pagevec_lru_move_fn+0xb1/0x100
          __pagevec_lru_add+0x1c/0x30
          lru_add_drain_cpu+0xa3/0x130
          lru_add_drain+0x2f/0x40
         ...
      
      The natural solution might be to use a memcg callback whenever memory is
      hotadded; but that solution has not been scoped out, and it happens that
      we do have an easy location at which to update lruvec->zone.  The lruvec
      pointer is discovered either by mem_cgroup_zone_lruvec() or by
      mem_cgroup_page_lruvec(), and both of those do know the right zone.
      
      So check and set lruvec->zone in those; and remove the inadequate
      attempt to set lruvec->zone from lruvec_init(), which is called before
      NODE_DATA(node) has been allocated in such cases.
      
      Ah, there was one exceptionr.  For no particularly good reason,
      mem_cgroup_force_empty_list() has its own code for deciding lruvec.
      Change it to use the standard mem_cgroup_zone_lruvec() and
      mem_cgroup_get_lru_size() too.  In fact it was already safe against such
      an oops (the lru lists in danger could only be empty), but we're better
      proofed against future changes this way.
      
      I've marked this for stable (3.6) since we introduced the problem in 3.5
      (now closed to stable); but I have no idea if this is the only fix
      needed to get memory hotadd working with memcg in 3.6, and received no
      answer when I enquired twice before.
      Reported-by: NTang Chen <tangchen@cn.fujitsu.com>
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
      Cc: Wen Congyang <wency@cn.fujitsu.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bea8c150
    • M
      memcg: oom: fix totalpages calculation for memory.swappiness==0 · 9a5a8f19
      Michal Hocko 提交于
      oom_badness() takes a totalpages argument which says how many pages are
      available and it uses it as a base for the score calculation.  The value
      is calculated by mem_cgroup_get_limit which considers both limit and
      total_swap_pages (resp.  memsw portion of it).
      
      This is usually correct but since fe35004f ("mm: avoid swapping out
      with swappiness==0") we do not swap when swappiness is 0 which means
      that we cannot really use up all the totalpages pages.  This in turn
      confuses oom score calculation if the memcg limit is much smaller than
      the available swap because the used memory (capped by the limit) is
      negligible comparing to totalpages so the resulting score is too small
      if adj!=0 (typically task with CAP_SYS_ADMIN or non zero oom_score_adj).
      A wrong process might be selected as result.
      
      The problem can be worked around by checking mem_cgroup_swappiness==0
      and not considering swap at all in such a case.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9a5a8f19
  7. 06 11月, 2012 4 次提交
    • T
      cgroup: make ->pre_destroy() return void · bcf6de1b
      Tejun Heo 提交于
      All ->pre_destory() implementations return 0 now, which is the only
      allowed return value.  Make it return void.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      bcf6de1b
    • M
      memcg: make mem_cgroup_reparent_charges non failing · ab5196c2
      Michal Hocko 提交于
      Now that pre_destroy callbacks are called from the context where neither
      any task can attach the group nor any children group can be added there
      is no other way to fail from mem_cgroup_pre_destroy.
      mem_cgroup_pre_destroy doesn't have to take a reference to memcg's css
      because all css' are marked dead already.
      
      tj: Remove now unused local variable @cgrp from
          mem_cgroup_reparent_charges().
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NGlauber Costa <glommer@parallels.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      ab5196c2
    • T
      cgroup: remove CGRP_WAIT_ON_RMDIR, cgroup_exclude_rmdir() and cgroup_release_and_wakeup_rmdir() · b25ed609
      Tejun Heo 提交于
      CGRP_WAIT_ON_RMDIR is another kludge which was added to make cgroup
      destruction rollback somewhat working.  cgroup_rmdir() used to drain
      CSS references and CGRP_WAIT_ON_RMDIR and the associated waitqueue and
      helpers were used to allow the task performing rmdir to wait for the
      next relevant event.
      
      Unfortunately, the wait is visible to controllers too and the
      mechanism got exposed to memcg by 88703267 ("cgroup avoid permanent
      sleep at rmdir").
      
      Now that the draining and retries are gone, CGRP_WAIT_ON_RMDIR is
      unnecessary.  Remove it and all the mechanisms supporting it.  Note
      that memcontrol.c changes are essentially revert of 88703267
      ("cgroup avoid permanent sleep at rmdir").
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Balbir Singh <bsingharora@gmail.com>
      b25ed609
    • T
      cgroup: kill CSS_REMOVED · e9316080
      Tejun Heo 提交于
      CSS_REMOVED is one of the several contortions which were necessary to
      support css reference draining on cgroup removal.  All css->refcnts
      which need draining should be deactivated and verified to equal zero
      atomically w.r.t. css_tryget().  If any one isn't zero, all refcnts
      needed to be re-activated and css_tryget() shouldn't fail in the
      process.
      
      This was achieved by letting css_tryget() busy-loop until either the
      refcnt is reactivated (failed removal attempt) or CSS_REMOVED is set
      (committing to removal).
      
      Now that css refcnt draining is no longer used, there's no need for
      atomic rollback mechanism.  css_tryget() simply can look at the
      reference count and fail if it's deactivated - it's never getting
      re-activated.
      
      This patch removes CSS_REMOVED and updates __css_tryget() to fail if
      the refcnt is deactivated.  As deactivation and removal are a single
      step now, they no longer need to be protected against css_tryget()
      happening from irq context.  Remove local_irq_disable/enable() from
      cgroup_rmdir().
      
      Note that this removes css_is_removed() whose only user is VM_BUG_ON()
      in memcontrol.c.  We can replace it with a check on the refcnt but
      given that the only use case is a debug assert, I think it's better to
      simply unexport it.
      
      v2: Comment updated and explanation on local_irq_disable/enable()
          added per Michal Hocko.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Balbir Singh <bsingharora@gmail.com>
      e9316080
  8. 30 10月, 2012 3 次提交
    • M
      memcg: Simplify mem_cgroup_force_empty_list error handling · 2ef37d3f
      Michal Hocko 提交于
      mem_cgroup_force_empty_list currently tries to remove all pages from
      the given LRU. To prevent from temoporary failures (EBUSY returned by
      mem_cgroup_move_parent) it uses a margin to the current LRU pages and
      returns the true if there are still some pages left on the list.
      
      If we consider that mem_cgroup_move_parent fails only when it is racing
      with somebody else removing (uncharging) the page or when the page is
      migrated then it is obvious that all those failures are only temporal
      and so we can safely retry later.
      Let's get rid of the safety margin and make the loop really wait for
      the empty LRU. The caller should still make sure that all charges have
      been removed from the res_counter because mem_cgroup_replace_page_cache
      might add a page to the LRU after the list_empty check (it doesn't touch
      res_counter though).
      This catches most of the cases except for shmem which might call
      mem_cgroup_replace_page_cache with a page which is not charged and on
      the LRU yet but this was the case also without this patch. In order to
      fix this we need a guarantee that try_get_mem_cgroup_from_page falls
      back to the current mm's cgroup so it needs css_tryget to fail. This
      will be fixed up in a later patch because it needs a help from cgroup
      core (pre_destroy has to be called after css is cleared).
      
      Although mem_cgroup_pre_destroy can still fail (if a new task or a new
      sub-group appears) there is no reason to retry pre_destroy callback from
      the cgroup core. This means that __DEPRECATED_clear_css_refs has lost
      its meaning and it can be removed.
      
      Changes since v2
      - remove __DEPRECATED_clear_css_refs
      
      Changes since v1
      - use kerndoc
      - be more specific about mem_cgroup_move_parent possible failures
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NGlauber Costa <glommer@parallels.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      2ef37d3f
    • M
      memcg: root_cgroup cannot reach mem_cgroup_move_parent · d8423011
      Michal Hocko 提交于
      The root cgroup cannot be destroyed so we never hit it down the
      mem_cgroup_pre_destroy path and mem_cgroup_force_empty_write shouldn't
      even try to do anything if called for the root.
      
      This means that mem_cgroup_move_parent doesn't have to bother with the
      root cgroup and it can assume it can always move charges upwards.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NGlauber Costa <glommer@parallels.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      d8423011
    • M
      memcg: split mem_cgroup_force_empty into reclaiming and reparenting parts · c26251f9
      Michal Hocko 提交于
      mem_cgroup_force_empty did two separate things depending on free_all
      parameter from the very beginning. It either reclaimed as many pages as
      possible and moved the rest to the parent or just moved charges to the
      parent. The first variant is used as memory.force_empty callback while
      the later is used from the mem_cgroup_pre_destroy.
      
      The whole games around gotos are far from being nice and there is no
      reason to keep those two functions inside one. Let's split them and
      also move the responsibility for css reference counting to their callers
      to make to code easier.
      
      This patch doesn't have any functional changes.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NGlauber Costa <glommer@parallels.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      c26251f9
  9. 09 10月, 2012 2 次提交
  10. 15 9月, 2012 1 次提交
    • T
      cgroup: mark subsystems with broken hierarchy support and whine if cgroups are nested for them · 8c7f6edb
      Tejun Heo 提交于
      Currently, cgroup hierarchy support is a mess.  cpu related subsystems
      behave correctly - configuration, accounting and control on a parent
      properly cover its children.  blkio and freezer completely ignore
      hierarchy and treat all cgroups as if they're directly under the root
      cgroup.  Others show yet different behaviors.
      
      These differing interpretations of cgroup hierarchy make using cgroup
      confusing and it impossible to co-mount controllers into the same
      hierarchy and obtain sane behavior.
      
      Eventually, we want full hierarchy support from all subsystems and
      probably a unified hierarchy.  Users using separate hierarchies
      expecting completely different behaviors depending on the mounted
      subsystem is deterimental to making any progress on this front.
      
      This patch adds cgroup_subsys.broken_hierarchy and sets it to %true
      for controllers which are lacking in hierarchy support.  The goal of
      this patch is two-fold.
      
      * Move users away from using hierarchy on currently non-hierarchical
        subsystems, so that implementing proper hierarchy support on those
        doesn't surprise them.
      
      * Keep track of which controllers are broken how and nudge the
        subsystems to implement proper hierarchy support.
      
      For now, start with a single warning message.  We can whine louder
      later on.
      
      v2: Fixed a typo spotted by Michal. Warning message updated.
      
      v3: Updated memcg part so that it doesn't generate warning in the
          cases where .use_hierarchy=false doesn't make the behavior
          different from root.use_hierarchy=true.  Fixed a typo spotted by
          Glauber.
      
      v4: Check ->broken_hierarchy after cgroup creation is complete so that
          ->create() can affect the result per Michal.  Dropped unnecessary
          memcg root handling per Michal.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Acked-by: NSerge E. Hallyn <serue@us.ibm.com>
      Cc: Glauber Costa <glommer@parallels.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Paul Turner <pjt@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Thomas Graf <tgraf@suug.ch>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
      Cc: Neil Horman <nhorman@tuxdriver.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      8c7f6edb
  11. 01 8月, 2012 11 次提交