1. 07 2月, 2018 4 次提交
  2. 07 12月, 2017 1 次提交
  3. 28 11月, 2017 1 次提交
    • L
      proc: don't report kernel addresses in /proc/<pid>/stack · 8f5abe84
      Linus Torvalds 提交于
      This just changes the file to report them as zero, although maybe even
      that could be removed.  I checked, and at least procps doesn't actually
      seem to parse the 'stack' file at all.
      
      And since the file doesn't necessarily even exist (it requires
      CONFIG_STACKTRACE), possibly other tools don't really use it either.
      
      That said, in case somebody parses it with tools, just having that zero
      there should keep such tools happy.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8f5abe84
  4. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  5. 01 10月, 2017 1 次提交
  6. 14 9月, 2017 1 次提交
    • M
      mm: treewide: remove GFP_TEMPORARY allocation flag · 0ee931c4
      Michal Hocko 提交于
      GFP_TEMPORARY was introduced by commit e12ba74d ("Group short-lived
      and reclaimable kernel allocations") along with __GFP_RECLAIMABLE.  It's
      primary motivation was to allow users to tell that an allocation is
      short lived and so the allocator can try to place such allocations close
      together and prevent long term fragmentation.  As much as this sounds
      like a reasonable semantic it becomes much less clear when to use the
      highlevel GFP_TEMPORARY allocation flag.  How long is temporary? Can the
      context holding that memory sleep? Can it take locks? It seems there is
      no good answer for those questions.
      
      The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
      __GFP_RECLAIMABLE which in itself is tricky because basically none of
      the existing caller provide a way to reclaim the allocated memory.  So
      this is rather misleading and hard to evaluate for any benefits.
      
      I have checked some random users and none of them has added the flag
      with a specific justification.  I suspect most of them just copied from
      other existing users and others just thought it might be a good idea to
      use without any measuring.  This suggests that GFP_TEMPORARY just
      motivates for cargo cult usage without any reasoning.
      
      I believe that our gfp flags are quite complex already and especially
      those with highlevel semantic should be clearly defined to prevent from
      confusion and abuse.  Therefore I propose dropping GFP_TEMPORARY and
      replace all existing users to simply use GFP_KERNEL.  Please note that
      SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
      so they will be placed properly for memory fragmentation prevention.
      
      I can see reasons we might want some gfp flag to reflect shorterm
      allocations but I propose starting from a clear semantic definition and
      only then add users with proper justification.
      
      This was been brought up before LSF this year by Matthew [1] and it
      turned out that GFP_TEMPORARY really doesn't have a clear semantic.  It
      seems to be a heuristic without any measured advantage for most (if not
      all) its current users.  The follow up discussion has revealed that
      opinions on what might be temporary allocation differ a lot between
      developers.  So rather than trying to tweak existing users into a
      semantic which they haven't expected I propose to simply remove the flag
      and start from scratch if we really need a semantic for short term
      allocations.
      
      [1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
      
      [akpm@linux-foundation.org: fix typo]
      [akpm@linux-foundation.org: coding-style fixes]
      [sfr@canb.auug.org.au: drm/i915: fix up]
        Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
      Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Neil Brown <neilb@suse.de>
      Cc: "Theodore Ts'o" <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0ee931c4
  7. 07 9月, 2017 1 次提交
    • D
      mm: add /proc/pid/smaps_rollup · 493b0e9d
      Daniel Colascione 提交于
      /proc/pid/smaps_rollup is a new proc file that improves the performance
      of user programs that determine aggregate memory statistics (e.g., total
      PSS) of a process.
      
      Android regularly "samples" the memory usage of various processes in
      order to balance its memory pool sizes.  This sampling process involves
      opening /proc/pid/smaps and summing certain fields.  For very large
      processes, sampling memory use this way can take several hundred
      milliseconds, due mostly to the overhead of the seq_printf calls in
      task_mmu.c.
      
      smaps_rollup improves the situation.  It contains most of the fields of
      /proc/pid/smaps, but instead of a set of fields for each VMA,
      smaps_rollup instead contains one synthetic smaps-format entry
      representing the whole process.  In the single smaps_rollup synthetic
      entry, each field is the summation of the corresponding field in all of
      the real-smaps VMAs.  Using a common format for smaps_rollup and smaps
      allows userspace parsers to repurpose parsers meant for use with
      non-rollup smaps for smaps_rollup, and it allows userspace to switch
      between smaps_rollup and smaps at runtime (say, based on the
      availability of smaps_rollup in a given kernel) with minimal fuss.
      
      By using smaps_rollup instead of smaps, a caller can avoid the
      significant overhead of formatting, reading, and parsing each of a large
      process's potentially very numerous memory mappings.  For sampling
      system_server's PSS in Android, we measured a 12x speedup, representing
      a savings of several hundred milliseconds.
      
      One alternative to a new per-process proc file would have been including
      PSS information in /proc/pid/status.  We considered this option but
      thought that PSS would be too expensive (by a few orders of magnitude)
      to collect relative to what's already emitted as part of
      /proc/pid/status, and slowing every user of /proc/pid/status for the
      sake of readers that happen to want PSS feels wrong.
      
      The code itself works by reusing the existing VMA-walking framework we
      use for regular smaps generation and keeping the mem_size_stats
      structure around between VMA walks instead of using a fresh one for each
      VMA.  In this way, summation happens automatically.  We let seq_file
      walk over the VMAs just as it does for regular smaps and just emit
      nothing to the seq_file until we hit the last VMA.
      
      Benchmarks:
      
          using smaps:
          iterations:1000 pid:1163 pss:220023808
          0m29.46s real 0m08.28s user 0m20.98s system
      
          using smaps_rollup:
          iterations:1000 pid:1163 pss:220702720
          0m04.39s real 0m00.03s user 0m04.31s system
      
      We're using the PSS samples we collect asynchronously for
      system-management tasks like fine-tuning oom_adj_score, memory use
      tracking for debugging, application-level memory-use attribution, and
      deciding whether we want to kill large processes during system idle
      maintenance windows.  Android has been using PSS for these purposes for
      a long time; as the average process VMA count has increased and and
      devices become more efficiency-conscious, PSS-collection inefficiency
      has started to matter more.  IMHO, it'd be a lot safer to optimize the
      existing PSS-collection model, which has been fine-tuned over the years,
      instead of changing the memory tracking approach entirely to work around
      smaps-generation inefficiency.
      
      Tim said:
      
      : There are two main reasons why Android gathers PSS information:
      :
      : 1. Android devices can show the user the amount of memory used per
      :    application via the settings app.  This is a less important use case.
      :
      : 2. We log PSS to help identify leaks in applications.  We have found
      :    an enormous number of bugs (in the Android platform, in Google's own
      :    apps, and in third-party applications) using this data.
      :
      : To do this, system_server (the main process in Android userspace) will
      : sample the PSS of a process three seconds after it changes state (for
      : example, app is launched and becomes the foreground application) and about
      : every ten minutes after that.  The net result is that PSS collection is
      : regularly running on at least one process in the system (usually a few
      : times a minute while the screen is on, less when screen is off due to
      : suspend).  PSS of a process is an incredibly useful stat to track, and we
      : aren't going to get rid of it.  We've looked at some very hacky approaches
      : using RSS ("take the RSS of the target process, subtract the RSS of the
      : zygote process that is the parent of all Android apps") to reduce the
      : accounting time, but it regularly overestimated the memory used by 20+
      : percent.  Accordingly, I don't think that there's a good alternative to
      : using PSS.
      :
      : We started looking into PSS collection performance after we noticed random
      : frequency spikes while a phone's screen was off; occasionally, one of the
      : CPU clusters would ramp to a high frequency because there was 200-300ms of
      : constant CPU work from a single thread in the main Android userspace
      : process.  The work causing the spike (which is reasonable governor
      : behavior given the amount of CPU time needed) was always PSS collection.
      : As a result, Android is burning more power than we should be on PSS
      : collection.
      :
      : The other issue (and why I'm less sure about improving smaps as a
      : long-term solution) is that the number of VMAs per process has increased
      : significantly from release to release.  After trying to figure out why we
      : were seeing these 200-300ms PSS collection times on Android O but had not
      : noticed it in previous versions, we found that the number of VMAs in the
      : main system process increased by 50% from Android N to Android O (from
      : ~1800 to ~2700) and varying increases in every userspace process.  Android
      : M to N also had an increase in the number of VMAs, although not as much.
      : I'm not sure why this is increasing so much over time, but thinking about
      : ASLR and ways to make ASLR better, I expect that this will continue to
      : increase going forward.  I would not be surprised if we hit 5000 VMAs on
      : the main Android process (system_server) by 2020.
      :
      : If we assume that the number of VMAs is going to increase over time, then
      : doing anything we can do to reduce the overhead of each VMA during PSS
      : collection seems like the right way to go, and that means outputting an
      : aggregate statistic (to avoid whatever overhead there is per line in
      : writing smaps and in reading each line from userspace).
      
      Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.comSigned-off-by: NDaniel Colascione <dancol@google.com>
      Cc: Tim Murray <timmurray@google.com>
      Cc: Joel Fernandes <joelaf@google.com>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Sonny Rao <sonnyrao@chromium.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      493b0e9d
  8. 10 8月, 2017 1 次提交
  9. 15 7月, 2017 5 次提交
  10. 13 7月, 2017 1 次提交
    • D
      fault-inject: support systematic fault injection · e41d5818
      Dmitry Vyukov 提交于
      Add /proc/self/task/<current-tid>/fail-nth file that allows failing
      0-th, 1-st, 2-nd and so on calls systematically.
      Excerpt from the added documentation:
      
       "Write to this file of integer N makes N-th call in the current task
        fail (N is 0-based). Read from this file returns a single char 'Y' or
        'N' that says if the fault setup with a previous write to this file
        was injected or not, and disables the fault if it wasn't yet injected.
        Note that this file enables all types of faults (slab, futex, etc).
        This setting takes precedence over all other generic settings like
        probability, interval, times, etc. But per-capability settings (e.g.
        fail_futex/ignore-private) take precedence over it. This feature is
        intended for systematic testing of faults in a single system call. See
        an example below"
      
      Why add a new setting:
      1. Existing settings are global rather than per-task.
         So parallel testing is not possible.
      2. attr->interval is close but it depends on attr->count
         which is non reset to 0, so interval does not work as expected.
      3. Trying to model this with existing settings requires manipulations
         of all of probability, interval, times, space, task-filter and
         unexposed count and per-task make-it-fail files.
      4. Existing settings are per-failure-type, and the set of failure
         types is potentially expanding.
      5. make-it-fail can't be changed by unprivileged user and aggressive
         stress testing better be done from an unprivileged user.
         Similarly, this would require opening the debugfs files to the
         unprivileged user, as he would need to reopen at least times file
         (not possible to pre-open before dropping privs).
      
      The proposed interface solves all of the above (see the example).
      
      We want to integrate this into syzkaller fuzzer.  A prototype has found
      10 bugs in kernel in first day of usage:
      
        https://groups.google.com/forum/#!searchin/syzkaller/%22FAULT_INJECTION%22%7Csort:relevance
      
      I've made the current interface work with all types of our sandboxes.
      For setuid the secret sauce was prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) to
      make /proc entries non-root owned.  So I am fine with the current
      version of the code.
      
      [akpm@linux-foundation.org: fix build]
      Link: http://lkml.kernel.org/r/20170328130128.101773-1-dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com>
      Cc: Akinobu Mita <akinobu.mita@gmail.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e41d5818
  11. 31 5月, 2017 1 次提交
    • L
      "Yes, people use FOLL_FORCE ;)" · f511c0b1
      Linus Torvalds 提交于
      This effectively reverts commit 8ee74a91 ("proc: try to remove use
      of FOLL_FORCE entirely")
      
      It turns out that people do depend on FOLL_FORCE for the /proc/<pid>/mem
      case, and we're talking not just debuggers. Talking to the affected people, the use-cases are:
      
      Keno Fischer:
       "We used these semantics as a hardening mechanism in the julia JIT. By
        opening /proc/self/mem and using these semantics, we could avoid
        needing RWX pages, or a dual mapping approach. We do have fallbacks to
        these other methods (though getting EIO here actually causes an assert
        in released versions - we'll updated that to make sure to take the
        fall back in that case).
      
        Nevertheless the /proc/self/mem approach was our favored approach
        because it a) Required an attacker to be able to execute syscalls
        which is a taller order than getting memory write and b) didn't double
        the virtual address space requirements (as a dual mapping approach
        would).
      
        I think in general this feature is very useful for anybody who needs
        to precisely control the execution of some other process. Various
        debuggers (gdb/lldb/rr) certainly fall into that category, but there's
        another class of such processes (wine, various emulators) which may
        want to do that kind of thing.
      
        Now, I suspect most of these will have the other process under ptrace
        control, so maybe allowing (same_mm || ptraced) would be ok, but at
        least for the sandbox/remote-jit use case, it would be perfectly
        reasonable to not have the jit server be a ptracer"
      
      Robert O'Callahan:
       "We write to readonly code and data mappings via /proc/.../mem in lots
        of different situations, particularly when we're adjusting program
        state during replay to match the recorded execution.
      
        Like Julia, we can add workarounds, but they could be expensive."
      
      so not only do people use FOLL_FORCE for both reads and writes, but they
      use it for both the local mm and remote mm.
      
      With these comments in mind, we likely also cannot add the "are we
      actively ptracing" check either, so this keeps the new code organization
      and does not do a real revert that would add back the original comment
      about "Maybe we should limit FOLL_FORCE to actual ptrace users?"
      Reported-by: NKeno Fischer <keno@juliacomputing.com>
      Reported-by: NRobert O'Callahan <robert@ocallahan.org>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f511c0b1
  12. 09 5月, 2017 1 次提交
    • L
      proc: try to remove use of FOLL_FORCE entirely · 8ee74a91
      Linus Torvalds 提交于
      We fixed the bugs in it, but it's still an ugly interface, so let's see
      if anybody actually depends on it.  It's entirely possible that nothing
      actually requires the whole "punch through read-only mappings"
      semantics.
      
      For example, gdb definitely uses the /proc/<pid>/mem interface, but it
      looks like it mainly does it for regular reads of the target (that don't
      need FOLL_FORCE), and looking at the gdb source code seems to fall back
      on the traditional ptrace(PTRACE_POKEDATA) interface if it needs to.
      
      If this breaks something, I do have a (more complex) version that only
      enables FOLL_FORCE when somebody has PTRACE_ATTACH'ed to the target,
      like the comment here used to say ("Maybe we should limit FOLL_FORCE to
      actual ptrace users?").
      
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8ee74a91
  13. 08 3月, 2017 1 次提交
  14. 03 3月, 2017 1 次提交
    • D
      statx: Add a system call to make enhanced file info available · a528d35e
      David Howells 提交于
      Add a system call to make extended file information available, including
      file creation and some attribute flags where available through the
      underlying filesystem.
      
      The getattr inode operation is altered to take two additional arguments: a
      u32 request_mask and an unsigned int flags that indicate the
      synchronisation mode.  This change is propagated to the vfs_getattr*()
      function.
      
      Functions like vfs_stat() are now inline wrappers around new functions
      vfs_statx() and vfs_statx_fd() to reduce stack usage.
      
      ========
      OVERVIEW
      ========
      
      The idea was initially proposed as a set of xattrs that could be retrieved
      with getxattr(), but the general preference proved to be for a new syscall
      with an extended stat structure.
      
      A number of requests were gathered for features to be included.  The
      following have been included:
      
       (1) Make the fields a consistent size on all arches and make them large.
      
       (2) Spare space, request flags and information flags are provided for
           future expansion.
      
       (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
           __s64).
      
       (4) Creation time: The SMB protocol carries the creation time, which could
           be exported by Samba, which will in turn help CIFS make use of
           FS-Cache as that can be used for coherency data (stx_btime).
      
           This is also specified in NFSv4 as a recommended attribute and could
           be exported by NFSD [Steve French].
      
       (5) Lightweight stat: Ask for just those details of interest, and allow a
           netfs (such as NFS) to approximate anything not of interest, possibly
           without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
           Dilger] (AT_STATX_DONT_SYNC).
      
       (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
           its cached attributes are up to date [Trond Myklebust]
           (AT_STATX_FORCE_SYNC).
      
      And the following have been left out for future extension:
      
       (7) Data version number: Could be used by userspace NFS servers [Aneesh
           Kumar].
      
           Can also be used to modify fill_post_wcc() in NFSD which retrieves
           i_version directly, but has just called vfs_getattr().  It could get
           it from the kstat struct if it used vfs_xgetattr() instead.
      
           (There's disagreement on the exact semantics of a single field, since
           not all filesystems do this the same way).
      
       (8) BSD stat compatibility: Including more fields from the BSD stat such
           as creation time (st_btime) and inode generation number (st_gen)
           [Jeremy Allison, Bernd Schubert].
      
       (9) Inode generation number: Useful for FUSE and userspace NFS servers
           [Bernd Schubert].
      
           (This was asked for but later deemed unnecessary with the
           open-by-handle capability available and caused disagreement as to
           whether it's a security hole or not).
      
      (10) Extra coherency data may be useful in making backups [Andreas Dilger].
      
           (No particular data were offered, but things like last backup
           timestamp, the data version number and the DOS archive bit would come
           into this category).
      
      (11) Allow the filesystem to indicate what it can/cannot provide: A
           filesystem can now say it doesn't support a standard stat feature if
           that isn't available, so if, for instance, inode numbers or UIDs don't
           exist or are fabricated locally...
      
           (This requires a separate system call - I have an fsinfo() call idea
           for this).
      
      (12) Store a 16-byte volume ID in the superblock that can be returned in
           struct xstat [Steve French].
      
           (Deferred to fsinfo).
      
      (13) Include granularity fields in the time data to indicate the
           granularity of each of the times (NFSv4 time_delta) [Steve French].
      
           (Deferred to fsinfo).
      
      (14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
           Note that the Linux IOC flags are a mess and filesystems such as Ext4
           define flags that aren't in linux/fs.h, so translation in the kernel
           may be a necessity (or, possibly, we provide the filesystem type too).
      
           (Some attributes are made available in stx_attributes, but the general
           feeling was that the IOC flags were to ext[234]-specific and shouldn't
           be exposed through statx this way).
      
      (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
           Michael Kerrisk].
      
           (Deferred, probably to fsinfo.  Finding out if there's an ACL or
           seclabal might require extra filesystem operations).
      
      (16) Femtosecond-resolution timestamps [Dave Chinner].
      
           (A __reserved field has been left in the statx_timestamp struct for
           this - if there proves to be a need).
      
      (17) A set multiple attributes syscall to go with this.
      
      ===============
      NEW SYSTEM CALL
      ===============
      
      The new system call is:
      
      	int ret = statx(int dfd,
      			const char *filename,
      			unsigned int flags,
      			unsigned int mask,
      			struct statx *buffer);
      
      The dfd, filename and flags parameters indicate the file to query, in a
      similar way to fstatat().  There is no equivalent of lstat() as that can be
      emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
      also no equivalent of fstat() as that can be emulated by passing a NULL
      filename to statx() with the fd of interest in dfd.
      
      Whether or not statx() synchronises the attributes with the backing store
      can be controlled by OR'ing a value into the flags argument (this typically
      only affects network filesystems):
      
       (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
           respect.
      
       (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
           its attributes with the server - which might require data writeback to
           occur to get the timestamps correct.
      
       (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
           network filesystem.  The resulting values should be considered
           approximate.
      
      mask is a bitmask indicating the fields in struct statx that are of
      interest to the caller.  The user should set this to STATX_BASIC_STATS to
      get the basic set returned by stat().  It should be noted that asking for
      more information may entail extra I/O operations.
      
      buffer points to the destination for the data.  This must be 256 bytes in
      size.
      
      ======================
      MAIN ATTRIBUTES RECORD
      ======================
      
      The following structures are defined in which to return the main attribute
      set:
      
      	struct statx_timestamp {
      		__s64	tv_sec;
      		__s32	tv_nsec;
      		__s32	__reserved;
      	};
      
      	struct statx {
      		__u32	stx_mask;
      		__u32	stx_blksize;
      		__u64	stx_attributes;
      		__u32	stx_nlink;
      		__u32	stx_uid;
      		__u32	stx_gid;
      		__u16	stx_mode;
      		__u16	__spare0[1];
      		__u64	stx_ino;
      		__u64	stx_size;
      		__u64	stx_blocks;
      		__u64	__spare1[1];
      		struct statx_timestamp	stx_atime;
      		struct statx_timestamp	stx_btime;
      		struct statx_timestamp	stx_ctime;
      		struct statx_timestamp	stx_mtime;
      		__u32	stx_rdev_major;
      		__u32	stx_rdev_minor;
      		__u32	stx_dev_major;
      		__u32	stx_dev_minor;
      		__u64	__spare2[14];
      	};
      
      The defined bits in request_mask and stx_mask are:
      
      	STATX_TYPE		Want/got stx_mode & S_IFMT
      	STATX_MODE		Want/got stx_mode & ~S_IFMT
      	STATX_NLINK		Want/got stx_nlink
      	STATX_UID		Want/got stx_uid
      	STATX_GID		Want/got stx_gid
      	STATX_ATIME		Want/got stx_atime{,_ns}
      	STATX_MTIME		Want/got stx_mtime{,_ns}
      	STATX_CTIME		Want/got stx_ctime{,_ns}
      	STATX_INO		Want/got stx_ino
      	STATX_SIZE		Want/got stx_size
      	STATX_BLOCKS		Want/got stx_blocks
      	STATX_BASIC_STATS	[The stuff in the normal stat struct]
      	STATX_BTIME		Want/got stx_btime{,_ns}
      	STATX_ALL		[All currently available stuff]
      
      stx_btime is the file creation time, stx_mask is a bitmask indicating the
      data provided and __spares*[] are where as-yet undefined fields can be
      placed.
      
      Time fields are structures with separate seconds and nanoseconds fields
      plus a reserved field in case we want to add even finer resolution.  Note
      that times will be negative if before 1970; in such a case, the nanosecond
      fields will also be negative if not zero.
      
      The bits defined in the stx_attributes field convey information about a
      file, how it is accessed, where it is and what it does.  The following
      attributes map to FS_*_FL flags and are the same numerical value:
      
      	STATX_ATTR_COMPRESSED		File is compressed by the fs
      	STATX_ATTR_IMMUTABLE		File is marked immutable
      	STATX_ATTR_APPEND		File is append-only
      	STATX_ATTR_NODUMP		File is not to be dumped
      	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs
      
      Within the kernel, the supported flags are listed by:
      
      	KSTAT_ATTR_FS_IOC_FLAGS
      
      [Are any other IOC flags of sufficient general interest to be exposed
      through this interface?]
      
      New flags include:
      
      	STATX_ATTR_AUTOMOUNT		Object is an automount trigger
      
      These are for the use of GUI tools that might want to mark files specially,
      depending on what they are.
      
      Fields in struct statx come in a number of classes:
      
       (0) stx_dev_*, stx_blksize.
      
           These are local system information and are always available.
      
       (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
           stx_size, stx_blocks.
      
           These will be returned whether the caller asks for them or not.  The
           corresponding bits in stx_mask will be set to indicate whether they
           actually have valid values.
      
           If the caller didn't ask for them, then they may be approximated.  For
           example, NFS won't waste any time updating them from the server,
           unless as a byproduct of updating something requested.
      
           If the values don't actually exist for the underlying object (such as
           UID or GID on a DOS file), then the bit won't be set in the stx_mask,
           even if the caller asked for the value.  In such a case, the returned
           value will be a fabrication.
      
           Note that there are instances where the type might not be valid, for
           instance Windows reparse points.
      
       (2) stx_rdev_*.
      
           This will be set only if stx_mode indicates we're looking at a
           blockdev or a chardev, otherwise will be 0.
      
       (3) stx_btime.
      
           Similar to (1), except this will be set to 0 if it doesn't exist.
      
      =======
      TESTING
      =======
      
      The following test program can be used to test the statx system call:
      
      	samples/statx/test-statx.c
      
      Just compile and run, passing it paths to the files you want to examine.
      The file is built automatically if CONFIG_SAMPLES is enabled.
      
      Here's some example output.  Firstly, an NFS directory that crosses to
      another FSID.  Note that the AUTOMOUNT attribute is set because transiting
      this directory will cause d_automount to be invoked by the VFS.
      
      	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
      	statx(/warthog/data) = 0
      	results=7ff
      	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
      	Device: 00:26           Inode: 1703937     Links: 125
      	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
      	Access: 2016-11-24 09:02:12.219699527+0000
      	Modify: 2016-11-17 10:44:36.225653653+0000
      	Change: 2016-11-17 10:44:36.225653653+0000
      	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
      
      Secondly, the result of automounting on that directory.
      
      	[root@andromeda ~]# /tmp/test-statx /warthog/data
      	statx(/warthog/data) = 0
      	results=7ff
      	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
      	Device: 00:27           Inode: 2           Links: 125
      	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
      	Access: 2016-11-24 09:02:12.219699527+0000
      	Modify: 2016-11-17 10:44:36.225653653+0000
      	Change: 2016-11-17 10:44:36.225653653+0000
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      a528d35e
  15. 02 3月, 2017 5 次提交
  16. 28 2月, 2017 2 次提交
  17. 25 2月, 2017 2 次提交
  18. 28 1月, 2017 1 次提交
  19. 25 1月, 2017 1 次提交
  20. 24 1月, 2017 1 次提交
  21. 09 1月, 2017 1 次提交
  22. 25 12月, 2016 1 次提交
  23. 13 12月, 2016 4 次提交
  24. 15 11月, 2016 1 次提交