- 05 11月, 2015 1 次提交
-
-
由 Nitin Gupta 提交于
Orabug: 21896119 Use machine descriptor (MD) to get node latency values instead of just using default values. Testing: On an T5-8 system with: - total nodes = 8 - self latencies = 0x26d18 - latency to other nodes = 0x3a598 => latency ratio = ~1.5 output of numactl --hardware - before fix: node distances: node 0 1 2 3 4 5 6 7 0: 10 20 20 20 20 20 20 20 1: 20 10 20 20 20 20 20 20 2: 20 20 10 20 20 20 20 20 3: 20 20 20 10 20 20 20 20 4: 20 20 20 20 10 20 20 20 5: 20 20 20 20 20 10 20 20 6: 20 20 20 20 20 20 10 20 7: 20 20 20 20 20 20 20 10 - after fix: node distances: node 0 1 2 3 4 5 6 7 0: 10 15 15 15 15 15 15 15 1: 15 10 15 15 15 15 15 15 2: 15 15 10 15 15 15 15 15 3: 15 15 15 10 15 15 15 15 4: 15 15 15 15 10 15 15 15 5: 15 15 15 15 15 10 15 15 6: 15 15 15 15 15 15 10 15 7: 15 15 15 15 15 15 15 10 Signed-off-by: NNitin Gupta <nitin.m.gupta@oracle.com> Reviewed-by: NChris Hyser <chris.hyser@oracle.com> Reviewed-by: NSantosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 6月, 2015 1 次提交
-
-
由 Tony Luck 提交于
Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: NTony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 6月, 2015 1 次提交
-
-
由 Khalid Aziz 提交于
sparc: Resolve conflict between sparc v9 and M7 on usage of bit 9 of TTE Bit 9 of TTE is CV (Cacheable in V-cache) on sparc v9 processor while the same bit 9 is MCDE (Memory Corruption Detection Enable) on M7 processor. This creates a conflicting usage of the same bit. Kernel sets TTE.cv bit on all pages for sun4v architecture which works well for sparc v9 but enables memory corruption detection on M7 processor which is not the intent. This patch adds code to determine if kernel is running on M7 processor and takes steps to not enable memory corruption detection in TTE erroneously. Signed-off-by: NKhalid Aziz <khalid.aziz@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 5月, 2015 1 次提交
-
-
由 David Hildenbrand 提交于
Introduce faulthandler_disabled() and use it to check for irq context and disabled pagefaults (via pagefault_disable()) in the pagefault handlers. Please note that we keep the in_atomic() checks in place - to detect whether in irq context (in which case preemption is always properly disabled). In contrast, preempt_disable() should never be used to disable pagefaults. With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt counter, and therefore the result of in_atomic() differs. We validate that condition by using might_fault() checks when calling might_sleep(). Therefore, add a comment to faulthandler_disabled(), describing why this is needed. faulthandler_disabled() and pagefault_disable() are defined in linux/uaccess.h, so let's properly add that include to all relevant files. This patch is based on a patch from Thomas Gleixner. Reviewed-and-tested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 3月, 2015 1 次提交
-
-
由 David S. Miller 提交于
/proc/kcore investigates the "System RAM" elements in /proc/iomem to initialize it's memory tables. Therefore we have to register them before it tries to do so. kcore uses device_initcall() so let's use arch_initcall() for the registry. Also we need ARCH_PROC_KCORE_TEXT to get the virtual addresses of the kernel image correct. Reported-by: NDavid Ahern <david.ahern@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 12月, 2014 1 次提交
-
-
由 Joonsoo Kim 提交于
Now, we have prepared to avoid using debug-pagealloc in boottime. So introduce new kernel-parameter to disable debug-pagealloc in boottime, and makes related functions to be disabled in this case. Only non-intuitive part is change of guard page functions. Because guard page is effective only if debug-pagealloc is enabled, turning off according to debug-pagealloc is reasonable thing to do. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 10月, 2014 8 次提交
-
-
由 David S. Miller 提交于
swapper_low_pmd_dir and swapper_pud_dir are actually completely useless and unnecessary. We just need swapper_pg_dir[]. Naturally the other page table chunks will be allocated on an as-needed basis. Since the kernel actually accesses these tables in the PAGE_OFFSET view, there is not even a TLB locality advantage of placing them in the kernel image. Use the hard coded vmlinux.ld.S slot for swapper_pg_dir which is naturally page aligned. Increase MAX_BANKS to 1024 in order to handle heavily fragmented virtual guests. Even with this MAX_BANKS increase, the kernel is 20K+ smaller. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
In order to accomodate embedded per-cpu allocation with large numbers of cpus and numa nodes, we have to use as much virtual address space as possible for the vmalloc region. Otherwise we can get things like: PERCPU: max_distance=0x380001c10000 too large for vmalloc space 0xff00000000 So, once we select a value for PAGE_OFFSET, derive the size of the vmalloc region based upon that. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
Make sure, at compile time, that the kernel can properly support whatever MAX_PHYS_ADDRESS_BITS is defined to. On M7 chips, use a max_phys_bits value of 49. Based upon a patch by Bob Picco. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
For sparse memory configurations, the vmemmap array behaves terribly and it takes up an inordinate amount of space in the BSS section of the kernel image unconditionally. Just build huge PMDs and look them up just like we do for TLB misses in the vmalloc area. Kernel BSS shrinks by about 2MB. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
If max_phys_bits needs to be > 43 (f.e. for T4 chips), things like DEBUG_PAGEALLOC stop working because the 3-level page tables only can cover up to 43 bits. Another problem is that when we increased MAX_PHYS_ADDRESS_BITS up to 47, several statically allocated tables became enormous. Compounding this is that we will need to support up to 49 bits of physical addressing for M7 chips. The two tables in question are sparc64_valid_addr_bitmap and kpte_linear_bitmap. The first holds a bitmap, with 1 bit for each 4MB chunk of physical memory, indicating whether that chunk actually exists in the machine and is valid. The second table is a set of 2-bit values which tell how large of a mapping (4MB, 256MB, 2GB, 16GB, respectively) we can use at each 256MB chunk of ram in the system. These tables are huge and take up an enormous amount of the BSS section of the sparc64 kernel image. Specifically, the sparc64_valid_addr_bitmap is 4MB, and the kpte_linear_bitmap is 128K. So let's solve the space wastage and the DEBUG_PAGEALLOC problem at the same time, by using the kernel page tables (as designed) to manage this information. We have to keep using large mappings when DEBUG_PAGEALLOC is disabled, and we do this by encoding huge PMDs and PUDs. On a T4-2 with 256GB of ram the kernel page table takes up 16K with DEBUG_PAGEALLOC disabled and 256MB with it enabled. Furthermore, this memory is dynamically allocated at run time rather than coded statically into the kernel image. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
As currently coded the KTSB accesses in the kernel only support up to 47 bits of physical addressing. Adjust the instruction and patching sequence in order to support arbitrary 64 bits addresses. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
Now that we use 4-level page tables, we can provide up to 53-bits of virtual address space to the user. Adjust the VA hole based upon the capabilities of the cpu type probed. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
This has become necessary with chips that support more than 43-bits of physical addressing. Based almost entirely upon a patch by Bob Picco. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
- 05 10月, 2014 1 次提交
-
-
由 David S. Miller 提交于
When we have to split up a flush request into multiple pieces (in order to avoid the firmware range) we don't specify the arguments in the right order for the second piece. Fix the order, or else we get hangs as the code tries to flush "a lot" of entries and we get lockups like this: [ 4422.981276] NMI watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [expect:117032] [ 4422.996130] Modules linked in: ipv6 loop usb_storage igb ptp sg sr_mod ehci_pci ehci_hcd pps_core n2_rng rng_core [ 4423.016617] CPU: 12 PID: 117032 Comm: expect Not tainted 3.17.0-rc4+ #1608 [ 4423.030331] task: fff8003cc730e220 ti: fff8003d99d54000 task.ti: fff8003d99d54000 [ 4423.045282] TSTATE: 0000000011001602 TPC: 00000000004521e8 TNPC: 00000000004521ec Y: 00000000 Not tainted [ 4423.064905] TPC: <__flush_tlb_kernel_range+0x28/0x40> [ 4423.074964] g0: 000000000052fd10 g1: 00000001295a8000 g2: ffffff7176ffc000 g3: 0000000000002000 [ 4423.092324] g4: fff8003cc730e220 g5: fff8003dfedcc000 g6: fff8003d99d54000 g7: 0000000000000006 [ 4423.109687] o0: 0000000000000000 o1: 0000000000000000 o2: 0000000000000003 o3: 00000000f0000000 [ 4423.127058] o4: 0000000000000080 o5: 00000001295a8000 sp: fff8003d99d56d01 ret_pc: 000000000052ff54 [ 4423.145121] RPC: <__purge_vmap_area_lazy+0x314/0x3a0> [ 4423.155185] l0: 0000000000000000 l1: 0000000000000000 l2: 0000000000a38040 l3: 0000000000000000 [ 4423.172559] l4: fff8003dae8965e0 l5: ffffffffffffffff l6: 0000000000000000 l7: 00000000f7e2b138 [ 4423.189913] i0: fff8003d99d576a0 i1: fff8003d99d576a8 i2: fff8003d99d575e8 i3: 0000000000000000 [ 4423.207284] i4: 0000000000008008 i5: fff8003d99d575c8 i6: fff8003d99d56df1 i7: 0000000000530c24 [ 4423.224640] I7: <free_vmap_area_noflush+0x64/0x80> [ 4423.234193] Call Trace: [ 4423.239051] [0000000000530c24] free_vmap_area_noflush+0x64/0x80 [ 4423.251029] [0000000000531a7c] remove_vm_area+0x5c/0x80 [ 4423.261628] [0000000000531b80] __vunmap+0x20/0x120 [ 4423.271352] [000000000071cf18] n_tty_close+0x18/0x40 [ 4423.281423] [00000000007222b0] tty_ldisc_close+0x30/0x60 [ 4423.292183] [00000000007225a4] tty_ldisc_reinit+0x24/0xa0 [ 4423.303120] [0000000000722ab4] tty_ldisc_hangup+0xd4/0x1e0 [ 4423.314232] [0000000000719aa0] __tty_hangup+0x280/0x3c0 [ 4423.324835] [0000000000724cb4] pty_close+0x134/0x1a0 [ 4423.334905] [000000000071aa24] tty_release+0x104/0x500 [ 4423.345316] [00000000005511d0] __fput+0x90/0x1e0 [ 4423.354701] [000000000047fa54] task_work_run+0x94/0xe0 [ 4423.365126] [0000000000404b44] __handle_signal+0xc/0x2c Fixes: 4ca9a237 ("sparc64: Guard against flushing openfirmware mappings.") Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 9月, 2014 2 次提交
-
-
由 bob picco 提交于
The "mem" boot option can result in many unexpected consequences. This patch attempts to prevent boot hangs which have been experienced on T4-4 and T5-8. Basically the boot loader allocates vmlinuz and initrd higher in available OBP physical memory. For example, on a 2Tb T5-8 it isn't possible to boot with mem=20G. The patch utilizes memblock to avoid reserved regions and trim memory which is only free. Other improvements are possible for a multi-node machine. This is a snippet of the boot log with mem=20G on T5-8 with the patch applied: MEMBLOCK configuration: <- before memory reduction memory size = 0x1ffad6ce000 reserved size = 0xa1adf44 memory.cnt = 0xb memory[0x0] [0x00000030400000-0x00003fdde47fff], 0x3fada48000 bytes memory[0x1] [0x00003fdde4e000-0x00003fdde4ffff], 0x2000 bytes memory[0x2] [0x00080000000000-0x00083fffffffff], 0x4000000000 bytes memory[0x3] [0x00100000000000-0x00103fffffffff], 0x4000000000 bytes memory[0x4] [0x00180000000000-0x00183fffffffff], 0x4000000000 bytes memory[0x5] [0x00200000000000-0x00203fffffffff], 0x4000000000 bytes memory[0x6] [0x00280000000000-0x00283fffffffff], 0x4000000000 bytes memory[0x7] [0x00300000000000-0x00303fffffffff], 0x4000000000 bytes memory[0x8] [0x00380000000000-0x00383fffc71fff], 0x3fffc72000 bytes memory[0x9] [0x00383fffc92000-0x00383fffca1fff], 0x10000 bytes memory[0xa] [0x00383fffcb4000-0x00383fffcb5fff], 0x2000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00380000000000-0x0038000117e7f8], 0x117e7f9 bytes reserved[0x1] [0x00380004000000-0x0038000d02f74a], 0x902f74b bytes ... MEMBLOCK configuration: <- after reduction of memory memory size = 0x50a1adf44 reserved size = 0xa1adf44 memory.cnt = 0x4 memory[0x0] [0x00380000000000-0x0038000117e7f8], 0x117e7f9 bytes memory[0x1] [0x00380004000000-0x0038050d01d74a], 0x50901d74b bytes memory[0x2] [0x00383fffc92000-0x00383fffca1fff], 0x10000 bytes memory[0x3] [0x00383fffcb4000-0x00383fffcb5fff], 0x2000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00380000000000-0x0038000117e7f8], 0x117e7f9 bytes reserved[0x1] [0x00380004000000-0x0038000d02f74a], 0x902f74b bytes ... Early memory node ranges node 7: [mem 0x380000000000-0x38000117dfff] node 7: [mem 0x380004000000-0x380f0d01bfff] node 7: [mem 0x383fffc92000-0x383fffca1fff] node 7: [mem 0x383fffcb4000-0x383fffcb5fff] Could not find start_pfn for node 0 Could not find start_pfn for node 1 Could not find start_pfn for node 2 Could not find start_pfn for node 3 Could not find start_pfn for node 4 Could not find start_pfn for node 5 Could not find start_pfn for node 6 . The patch was tested on T4-1, T5-8 and Jalap?no. Cc: sparclinux@vger.kernel.org Signed-off-by: NBob Picco <bob.picco@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 bob picco 提交于
We have seen an issue with guest boot into LDOM that causes early boot failures because of no matching rules for node identitity of the memory. I analyzed this on my T4 and concluded there might not be a solution. I saw the issue in mainline too when booting into the control/primary domain - with guests configured. Note, this could be a firmware bug on some older machines. I'll provide a full explanation of the issues below. Should we not find a matching BEST latency group for a real address (RA) then we will assume node 0. On the T4-2 here with the information provided I can't see an alternative. Technically the LDOM shown below should match the MBLOCK to the favorable latency group. However other factors must be considered too. Were the memory controllers configured "fine" grained interleave or "coarse" grain interleaved - T4. Also should a "group" MD node be considered a NUMA node? There has to be at least one Machine Description (MD) "group" and hence one NUMA node. The group can have one or more latency groups (lg) - more than one memory controller. The current code chooses the smallest latency as the most favorable per group. The latency and lg information is in MLGROUP below. MBLOCK is the base and size of the RAs for the machine as fetched from OBP /memory "available" property. My machine has one MBLOCK but more would be possible - with holes? For a T4-2 the following information has been gathered: with LDOM guest MEMBLOCK configuration: memory size = 0x27f870000 memory.cnt = 0x3 memory[0x0] [0x00000020400000-0x0000029fc67fff], 0x27f868000 bytes memory[0x1] [0x0000029fd8a000-0x0000029fd8bfff], 0x2000 bytes memory[0x2] [0x0000029fd92000-0x0000029fd97fff], 0x6000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00000020800000-0x000000216c15c0], 0xec15c1 bytes reserved[0x1] [0x00000024800000-0x0000002c180c1e], 0x7980c1f bytes MBLOCK[0]: base[20000000] size[280000000] offset[0] (note: "base" and "size" reported in "MBLOCK" encompass the "memory[X]" values) (note: (RA + offset) & mask = val is the formula to detect a match for the memory controller. should there be no match for find_node node, a return value of -1 resulted for the node - BAD) There is one group. It has these forward links MLGROUP[1]: node[545] latency[1f7e8] match[200000000] mask[200000000] MLGROUP[2]: node[54d] latency[2de60] match[0] mask[200000000] NUMA NODE[0]: node[545] mask[200000000] val[200000000] (latency[1f7e8]) (note: "val" is the best lg's (smallest latency) "match") no LDOM guest - bare metal MEMBLOCK configuration: memory size = 0xfdf2d0000 memory.cnt = 0x3 memory[0x0] [0x00000020400000-0x00000fff6adfff], 0xfdf2ae000 bytes memory[0x1] [0x00000fff6d2000-0x00000fff6e7fff], 0x16000 bytes memory[0x2] [0x00000fff766000-0x00000fff771fff], 0xc000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00000020800000-0x00000021a04580], 0x1204581 bytes reserved[0x1] [0x00000024800000-0x0000002c7d29fc], 0x7fd29fd bytes MBLOCK[0]: base[20000000] size[fe0000000] offset[0] there are two groups group node[16d5] MLGROUP[0]: node[1765] latency[1f7e8] match[0] mask[200000000] MLGROUP[3]: node[177d] latency[2de60] match[200000000] mask[200000000] NUMA NODE[0]: node[1765] mask[200000000] val[0] (latency[1f7e8]) group node[171d] MLGROUP[2]: node[1775] latency[2de60] match[0] mask[200000000] MLGROUP[1]: node[176d] latency[1f7e8] match[200000000] mask[200000000] NUMA NODE[1]: node[176d] mask[200000000] val[200000000] (latency[1f7e8]) (note: for this two "group" bare metal machine, 1/2 memory is in group one's lg and 1/2 memory is in group two's lg). Cc: sparclinux@vger.kernel.org Signed-off-by: NBob Picco <bob.picco@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 8月, 2014 1 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 8月, 2014 2 次提交
-
-
由 David S. Miller 提交于
Based almost entirely upon a patch by Christopher Alexander Tobias Schulze. In commit db64fe02 ("mm: rewrite vmap layer") lazy VMAP tlb flushing was added to the vmalloc layer. This causes problems on sparc64. Sparc64 has two VMAP mapped regions and they are not contiguous with eachother. First we have the malloc mapping area, then another unrelated region, then the vmalloc region. This "another unrelated region" is where the firmware is mapped. If the lazy TLB flushing logic in the vmalloc code triggers after we've had both a module unload and a vfree or similar, it will pass an address range that goes from somewhere inside the malloc region to somewhere inside the vmalloc region, and thus covering the openfirmware area entirely. The sparc64 kernel learns about openfirmware's dynamic mappings in this region early in the boot, and then services TLB misses in this area. But openfirmware has some locked TLB entries which are not mentioned in those dynamic mappings and we should thus not disturb them. These huge lazy TLB flush ranges causes those openfirmware locked TLB entries to be removed, resulting in all kinds of problems including hard hangs and crashes during reboot/reset. Besides causing problems like this, such huge TLB flush ranges are also incredibly inefficient. A plea has been made with the author of the VMAP lazy TLB flushing code, but for now we'll put a safety guard into our flush_tlb_kernel_range() implementation. Since the implementation has become non-trivial, stop defining it as a macro and instead make it a function in a C source file. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The assumption was that update_mmu_cache() (and the equivalent for PMDs) would only be called when the PTE being installed will be accessible by the user. This is not true for code paths originating from remove_migration_pte(). There are dire consequences for placing a non-valid PTE into the TSB. The TLB miss frramework assumes thatwhen a TSB entry matches we can just load it into the TLB and return from the TLB miss trap. So if a non-valid PTE is in there, we will deadlock taking the TLB miss over and over, never satisfying the miss. Just exit early from update_mmu_cache() and friends in this situation. Based upon a report and patch from Christopher Alexander Tobias Schulze. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 7月, 2014 1 次提交
-
-
由 bob picco 提交于
This patch adds sparc RAM to /proc/iomem. It also identifies the code, data and bss regions of the kernel. Signed-off-by: NBob Picco <bob.picco@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 5月, 2014 2 次提交
-
-
由 Sam Ravnborg 提交于
Fix following warnings: init_64.c:798:5: warning: symbol 'numa_cpu_lookup_table' was not declared. Should it be static? init_64.c:799:11: warning: symbol 'numa_cpumask_lookup_table' was not declared. Should it be static? The warnings were present with an allnoconfig Fix so the variables are only declared if CONFIG_NEED_MULTIPLE_NODES is defined. Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Sam Ravnborg 提交于
Fix following warnings: init_64.c:191:10: warning: symbol 'dcpage_flushes' was not declared. Should it be static? init_64.c:193:10: warning: symbol 'dcpage_flushes_xcall' was not declared. Should it be static? Add extern declaration to asm/setup.h and drop local declaration in smp_64.h Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 5月, 2014 1 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 1月, 2014 1 次提交
-
-
由 Tang Chen 提交于
[sfr@canb.auug.org.au: fix powerpc build] Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Reviewed-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 11月, 2013 1 次提交
-
-
由 Stephen Rothwell 提交于
After merging the final tree, today's linux-next build (sparc64 defconfig) failed like this: arch/sparc/mm/init_64.c: In function 'pte_alloc_one': arch/sparc/mm/init_64.c:2568:9: error: unused variable 'pte' [-Werror=unused-variable] Caused by the merge between commit 37b3a8ff ("sparc64: Move from 4MB to 8MB huge pages") and commit 1ae9ae5f ("sparc: handle pgtable_page_ctor() fail") (I had the following merge fix in linux-next, but it didn't seem to propagate upstream - may have forgotten to point it out :-(). Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 11月, 2013 1 次提交
-
-
由 Kirill A. Shutemov 提交于
Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 11月, 2013 1 次提交
-
-
由 David S. Miller 提交于
Now that we have 64-bits for PMDs we can stop using special encodings for the huge PMD values, and just put real PTEs in there. We allocate a _PAGE_PMD_HUGE bit to distinguish between plain PMDs and huge ones. It is the same for both 4U and 4V PTE layouts. We also use _PAGE_SPECIAL to indicate the splitting state, since a huge PMD cannot also be special. All of the PMD --> PTE translation code disappears, and most of the huge PMD bit modifications and tests just degenerate into the PTE operations. In particular USER_PGTABLE_CHECK_PMD_HUGE becomes trivial. As a side effect, normal PMDs don't shift the physical address around. This also speeds up the page table walks in the TLB miss paths since they don't have to do the shifts any more. Another non-trivial aspect is that pte_modify() has to be changed to preserve the _PAGE_PMD_HUGE bits as well as the page size field of the pte. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 11月, 2013 4 次提交
-
-
由 David S. Miller 提交于
To make the page tables compact, we were using 32-bit PGDs and PMDs. We only had to support <= 43 bits of physical addresses so this was quite feasible. In order to support larger physical addresses we have to move to 64-bit PGDs and PMDs. Most of the changes are straight-forward: 1) {pgd,pmd}_t --> unsigned long 2) Anything that tries to use plain "unsigned int" types with pgd/pmd values needs to be adjusted. In particular things like "0U" become "0UL". 3) {PGDIR,PMD}_BITS decrease by one. 4) In the assembler page table walkers, use "ldxa" instead of "lduwa" and adjust the low bit masks to clear out the low 3 bits instead of just the low 2 bits during pgd/pmd address formation. Also, use PTRS_PER_PGD and PTRS_PER_PMD in the sizing of the swapper_{pg_dir,low_pmd_dir} arrays. This patch does not try to take advantage of having 64-bits in the PMDs to simplify the hugepage code, that will come in a subsequent change. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The impetus for this is that we would like to move to 64-bit PMDs and PGDs, but that would result in only supporting a 42-bit address space with the current page table layout. It'd be nice to support at least 43-bits. The reason we'd end up with only 42-bits after making PMDs and PGDs 64-bit is that we only use half-page sized PTE tables in order to make PMDs line up to 4MB, the hardware huge page size we use. So what we do here is we make huge pages 8MB, and fabricate them using 4MB hw TLB entries. Facilitate this by providing a "REAL_HPAGE_SHIFT" which is used in places that really need to operate on hardware 4MB pages. Use full pages (512 entries) for PTE tables, and adjust PMD_SHIFT, PGD_SHIFT, and the build time CPP test as needed. Use a CPP test to make sure REAL_HPAGE_SHIFT and the _PAGE_SZHUGE_* we use match up. This makes the pgtable cache completely unused, so remove the code managing it and the state used in mm_context_t. Now we have less spinlocks taken in the page table allocation path. The technique we use to fabricate the 8MB pages is to transfer bit 22 from the missing virtual address into the PTEs physical address field. That takes care of the transparent huge pages case. For hugetlb, we fill things in at the PTE level and that code already puts the sub huge page physical bits into the PTEs, based upon the offset, so there is nothing special we need to do. It all just works out. So, a small amount of complexity in the THP case, but this code is about to get much simpler when we move the 64-bit PMDs as we can move away from the fancy 32-bit huge PMD encoding and just put a real PTE value in there. With bug fixes and help from Bob Picco. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Choose PAGE_OFFSET dynamically based upon cpu type. Original UltraSPARC-I (spitfire) chips only supported a 44-bit virtual address space. Newer chips (T4 and later) support 52-bit virtual addresses and up to 47-bits of physical memory space. Therefore we have to adjust PAGE_SIZE dynamically based upon the capabilities of the chip. Note that this change alone does not allow us to support > 43-bit physical memory, to do that we need to re-arrange our page table support. The current encodings of the pmd_t and pgd_t pointers restricts us to "32 + 11" == 43 bits. This change can waste quite a bit of memory for the various tables. In particular, a future change should work to size and allocate kern_linear_bitmap[] and sparc64_valid_addr_bitmap[] dynamically. This isn't easy as we really cannot take a TLB miss when accessing kern_linear_bitmap[]. We'd have to lock it into the TLB or similar. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
This pertains to all of the computations of the kernel fast TLB miss xor values. Based upon a patch by Bob Picco. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
- 15 7月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/sparc uses of the __cpuinit macros from C files and removes __CPUINIT from assembly files. Note that even though arch/sparc/kernel/trampoline_64.S has instances of ".previous" in it, they are all paired off against explicit ".section" directives, and not implicitly paired with __CPUINIT (unlike mips and arm were). [1] https://lkml.org/lkml/2013/5/20/589 Cc: "David S. Miller" <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 04 7月, 2013 3 次提交
-
-
由 Jiang Liu 提交于
Prepare for removing num_physpages and simplify mem_init(). Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Acked-by: NSam Ravnborg <sam@ravnborg.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jiang Liu 提交于
Concentrate code to modify totalram_pages into the mm core, so the arch memory initialized code doesn't need to take care of it. With these changes applied, only following functions from mm core modify global variable totalram_pages: free_bootmem_late(), free_all_bootmem(), free_all_bootmem_node(), adjust_managed_page_count(). With this patch applied, it will be much more easier for us to keep totalram_pages and zone->managed_pages in consistence. Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Acked-by: NDavid Howells <dhowells@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michel Lespinasse <walken@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jiang Liu 提交于
Change signature of free_reserved_area() according to Russell King's suggestion to fix following build warnings: arch/arm/mm/init.c: In function 'mem_init': arch/arm/mm/init.c:603:2: warning: passing argument 1 of 'free_reserved_area' makes integer from pointer without a cast [enabled by default] free_reserved_area(__va(PHYS_PFN_OFFSET), swapper_pg_dir, 0, NULL); ^ In file included from include/linux/mman.h:4:0, from arch/arm/mm/init.c:15: include/linux/mm.h:1301:22: note: expected 'long unsigned int' but argument is of type 'void *' extern unsigned long free_reserved_area(unsigned long start, unsigned long end, mm/page_alloc.c: In function 'free_reserved_area': >> mm/page_alloc.c:5134:3: warning: passing argument 1 of 'virt_to_phys' makes pointer from integer without a cast [enabled by default] In file included from arch/mips/include/asm/page.h:49:0, from include/linux/mmzone.h:20, from include/linux/gfp.h:4, from include/linux/mm.h:8, from mm/page_alloc.c:18: arch/mips/include/asm/io.h:119:29: note: expected 'const volatile void *' but argument is of type 'long unsigned int' mm/page_alloc.c: In function 'free_area_init_nodes': mm/page_alloc.c:5030:34: warning: array subscript is below array bounds [-Warray-bounds] Also address some minor code review comments. Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Reported-by: NArnd Bergmann <arnd@arndb.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: <sworddragon2@aol.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michel Lespinasse <walken@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 6月, 2013 1 次提交
-
-
由 bob picco 提交于
The Machine Description (MD) property "address-congruence-offset" is optional. According to the MD specification the value is assumed 0UL when not present. This caused early boot failure on T5. Signed-off-by: NBob Picco <bob.picco@oracle.com> CC: sparclinux@vger.kernel.org Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 5月, 2013 1 次提交
-
-
由 Jiang Liu 提交于
Use common help functions to free reserved pages. Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 4月, 2013 1 次提交
-
-
由 Johannes Weiner 提交于
The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Tested-by: NDavid S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 4月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
get_new_mmu_context() is always called with interrupts disabled. So it's possible to do this micro optimization. (Also fix the comment to switch_mm, which is called in both cases) Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> CC: David Miller <davem@davemloft.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-