- 12 6月, 2017 1 次提交
-
-
由 Martin Schwidefsky 提交于
Add the logic to upgrade the page table for a 64-bit process to five levels. This increases the TASK_SIZE from 8PB to 16EB-4K. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 25 4月, 2017 1 次提交
-
-
由 Martin Schwidefsky 提交于
The TASK_SIZE for a process should be maximum possible size of the address space, 2GB for a 31-bit process and 8PB for a 64-bit process. The number of page table levels required for a given memory layout is a consequence of the mapped memory areas and their location. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 22 3月, 2017 1 次提交
-
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. page_table_alloc then uses the flag for a single page allocation. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. An earlier attempt to remove the flag 10d58bf2 ("s390: get rid of superfluous __GFP_REPEAT") has missed this one but the situation is very same here. Signed-off-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 25 6月, 2016 1 次提交
-
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. page_table_alloc then uses the flag for a single page allocation. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-14-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 6月, 2016 2 次提交
-
-
由 Martin Schwidefsky 提交于
For a nested KVM guest the outer KVM host needs to create shadow page tables for the nested guest. This patch adds the basic support to the guest address space (gmap) code. For each guest address space the inner KVM host creates, the first outer KVM host needs to create shadow page tables. The address space is identified by the ASCE loaded into the control register 1 at the time the inner SIE instruction for the second nested KVM guest is executed. The outer KVM host creates the shadow tables starting with the table identified by the ASCE on a on-demand basis. The outer KVM host will get repeated faults for all the shadow tables needed to run the second KVM guest. While a shadow page table for the second KVM guest is active the access to the origin region, segment and page tables needs to be restricted for the first KVM guest. For region and segment and page tables the first KVM guest may read the memory, but write attempt has to lead to an unshadow. This is done using the page invalid and read-only bits in the page table of the first KVM guest. If the first guest re-accesses one of the origin pages of a shadow, it gets a fault and the affected parts of the shadow page table hierarchy needs to be removed again. PGSTE tables don't have to be shadowed, as all interpretation assist can't deal with the invalid bits in the shadow pte being set differently than the original ones provided by the first KVM guest. Many bug fixes and improvements by David Hildenbrand. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The gmap notifier list and the gmap list in the mm_struct change rarely. Use RCU to optimize the reader of these lists. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 21 4月, 2016 1 次提交
-
-
由 Gerald Schaefer 提交于
There is a race with multi-threaded applications between context switch and pagetable upgrade. In switch_mm() a new user_asce is built from mm->pgd and mm->context.asce_bits, w/o holding any locks. A concurrent mmap with a pagetable upgrade on another thread in crst_table_upgrade() could already have set new asce_bits, but not yet the new mm->pgd. This would result in a corrupt user_asce in switch_mm(), and eventually in a kernel panic from a translation exception. Fix this by storing the complete asce instead of just the asce_bits, which can then be read atomically from switch_mm(), so that it either sees the old value or the new value, but no mixture. Both cases are OK. Having the old value would result in a page fault on access to the higher level memory, but the fault handler would see the new mm->pgd, if it was a valid access after the mmap on the other thread has completed. So as worst-case scenario we would have a page fault loop for the racing thread until the next time slice. Also remove dead code and simplify the upgrade/downgrade path, there are no upgrades from 2 levels, and only downgrades from 3 levels for compat tasks. There are also no concurrent upgrades, because the mmap_sem is held with down_write() in do_mmap, so the flush and table checks during upgrade can be removed. Reported-by: NMichael Munday <munday@ca.ibm.com> Reviewed-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 08 3月, 2016 1 次提交
-
-
由 Martin Schwidefsky 提交于
The pgtable.c file is quite big, before it grows any larger split it into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related header definitions into the new gmap.h header and all of the pgste helpers from pgtable.h to pgtable.c. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-