- 09 2月, 2018 1 次提交
-
-
由 Hoang Le 提交于
In commit d618d09a ("tipc: enforce valid ratio between skb truesize and contents") we introduced a test for ensuring that the condition truesize/datasize <= 4 is true for a received buffer. Unfortunately this test has two problems. - Because of the integer arithmetics the test if (skb->truesize / buf_roundup_len(skb) > 4) will miss all ratios [4 < ratio < 5], which was not the intention. - The buffer returned by skb_copy() inherits skb->truesize of the original buffer, which doesn't help the situation at all. In this commit, we change the ratio condition and replace skb_copy() with a call to skb_copy_expand() to finally get this right. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 12月, 2017 1 次提交
-
-
由 Jon Maloy 提交于
When sending node local messages the code is using an 'mtu' of 66060 bytes to avoid unnecessary fragmentation. During situations of low memory tipc_msg_build() may sometimes fail to allocate such large buffers, resulting in unnecessary send failures. This can easily be remedied by falling back to a smaller MTU, and then reassemble the buffer chain as if the message were arriving from a remote node. At the same time, we change the initial MTU setting of the broadcast link to a lower value, so that large messages always are fragmented into smaller buffers even when we run in single node mode. Apart from obtaining the same advantage as for the 'fallback' solution above, this turns out to give a significant performance improvement. This can probably be explained with the __pskb_copy() operation performed on the buffer for each recipient during reception. We found the optimal value for this, considering the most relevant skb pool, to be 3744 bytes. Acked-by: NYing Xue <ying.xue@ericsson.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 11月, 2017 1 次提交
-
-
由 Jon Maloy 提交于
The socket level flow control is based on the assumption that incoming buffers meet the condition (skb->truesize / roundup(skb->len) <= 4), where the latter value is rounded off upwards to the nearest 1k number. This does empirically hold true for the device drivers we know, but we cannot trust that it will always be so, e.g., in a system with jumbo frames and very small packets. We now introduce a check for this condition at packet arrival, and if we find it to be false, we copy the packet to a new, smaller buffer, where the condition will be true. We expect this to affect only a small fraction of all incoming packets, if at all. Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 10月, 2017 1 次提交
-
-
由 Jon Maloy 提交于
In the following commits we will need to handle multiple incoming and rejected/returned buffers in the function socket.c::filter_rcv(). As a preparation for this, we generalize the function by handling buffer queues instead of individual buffers. We also introduce a help function tipc_skb_reject(), and rename filter_rcv() to tipc_sk_filter_rcv() in line with other functions in socket.c. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 10月, 2017 1 次提交
-
-
由 Jon Maloy 提交于
When a bundling message is received, the function tipc_link_input() calls function tipc_msg_extract() to unbundle all inner messages of the bundling message before adding them to input queue. The function tipc_msg_extract() just clones all inner skb for all inner messagges from the bundling skb. This means that the skb headroom of an inner message overlaps with the data part of the preceding message in the bundle. If the message in question is a name addressed message, it may be subject to a secondary destination lookup, and eventually be sent out on one of the interfaces again. But, since what is perceived as headroom by the device driver in reality is the last bytes of the preceding message in the bundle, the latter will be overwritten by the MAC addresses of the L2 header. If the preceding message has not yet been consumed by the user, it will evenually be delivered with corrupted contents. This commit fixes this by uncloning all messages passing through the function tipc_msg_lookup_dest(), hence ensuring that the headroom is always valid when the message is passed on. Signed-off-by: NTung Nguyen <tung.q.nguyen@dektech.com.au> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 10月, 2017 1 次提交
-
-
由 Parthasarathy Bhuvaragan 提交于
In commit e3a77561 ("tipc: split up function tipc_msg_eval()"), we have updated the function tipc_msg_lookup_dest() to set the error codes to negative values at destination lookup failures. Thus when the function sets the error code to -TIPC_ERR_NO_NAME, its inserted into the 4 bit error field of the message header as 0xf instead of TIPC_ERR_NO_NAME (1). The value 0xf is an unknown error code. In this commit, we set only positive error code. Fixes: e3a77561 ("tipc: split up function tipc_msg_eval()") Signed-off-by: NParthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 8月, 2017 1 次提交
-
-
由 Parthasarathy Bhuvaragan 提交于
In tipc_msg_reverse(), we assign skb attributes to local pointers in stack at startup. This is followed by skb_linearize() and for cloned buffers we perform skb relocation using pskb_expand_head(). Both these methods may update the skb attributes and thus making the pointers incorrect. In this commit, we fix this error by ensuring that the pointers are re-assigned after any of these skb operations. Fixes: 29042e19 ("tipc: let function tipc_msg_reverse() expand header when needed") Signed-off-by: NParthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com> Reviewed-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 8月, 2017 1 次提交
-
-
由 Jon Paul Maloy 提交于
In the function msg_reverse(), we reverse the header while trying to reuse the original buffer whenever possible. Those rejected/returned messages are always transmitted as unicast, but the msg_non_seq field is not explicitly set to zero as it should be. We have seen cases where multicast senders set the message type to "NOT dest_droppable", meaning that a multicast message shorter than one MTU will be returned, e.g., during receive buffer overflow, by reusing the original buffer. This has the effect that even the 'msg_non_seq' field is inadvertently inherited by the rejected message, although it is now sent as a unicast message. This again leads the receiving unicast link endpoint to steer the packet toward the broadcast link receive function, where it is dropped. The affected unicast link is thereafter (after 100 failed retransmissions) declared 'stale' and reset. We fix this by unconditionally setting the 'msg_non_seq' flag to zero for all rejected/returned messages. Reported-by: NCanh Duc Luu <canh.d.luu@dektech.com.au> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 6月, 2017 1 次提交
-
-
由 Jia-Ju Bai 提交于
The kernel may sleep under a rcu read lock in tipc_msg_reverse, and the function call path is: tipc_l2_rcv_msg (acquire the lock by rcu_read_lock) tipc_rcv tipc_sk_rcv tipc_msg_reverse pskb_expand_head(GFP_KERNEL) --> may sleep tipc_node_broadcast tipc_node_xmit_skb tipc_node_xmit tipc_sk_rcv tipc_msg_reverse pskb_expand_head(GFP_KERNEL) --> may sleep To fix it, "GFP_KERNEL" is replaced with "GFP_ATOMIC". Signed-off-by: NJia-Ju Bai <baijiaju1990@163.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 1月, 2017 1 次提交
-
-
由 Jon Paul Maloy 提交于
TIPC multicast messages are currently carried over a reliable 'broadcast link', making use of the underlying media's ability to transport packets as L2 broadcast or IP multicast to all nodes in the cluster. When the used bearer is lacking that ability, we can instead emulate the broadcast service by replicating and sending the packets over as many unicast links as needed to reach all identified destinations. We now introduce a new TIPC link-level 'replicast' service that does this. Reviewed-by: NParthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 1月, 2017 1 次提交
-
-
由 Parthasarathy Bhuvaragan 提交于
Until now, we allocate memory always with GFP_ATOMIC flag. When the system is under memory pressure and a user tries to send, the send fails due to low memory. However, the user application can wait for free memory if we allocate it using GFP_KERNEL flag. In this commit, we use allocate memory with GFP_KERNEL for all user allocation. Reported-by: NRune Torgersen <runet@innovsys.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NParthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 12月, 2016 1 次提交
-
-
由 Al Viro 提交于
copy_from_iter_full(), copy_from_iter_full_nocache() and csum_and_copy_from_iter_full() - counterparts of copy_from_iter() et.al., advancing iterator only in case of successful full copy and returning whether it had been successful or not. Convert some obvious users. *NOTE* - do not blindly assume that something is a good candidate for those unless you are sure that not advancing iov_iter in failure case is the right thing in this case. Anything that does short read/short write kind of stuff (or is in a loop, etc.) is unlikely to be a good one. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 23 6月, 2016 1 次提交
-
-
由 Jon Paul Maloy 提交于
When extracting an individual message from a received "bundle" buffer, we just create a clone of the base buffer, and adjust it to point into the right position of the linearized data area of the latter. This works well for regular message reception, but during periods of extremely high load it may happen that an extracted buffer, e.g, a connection probe, is reversed and forwarded through an external interface while the preceding extracted message is still unhandled. When this happens, the header or data area of the preceding message will be partially overwritten by a MAC header, leading to unpredicatable consequences, such as a link reset. We now fix this by ensuring that the msg_reverse() function never returns a cloned buffer, and that the returned buffer always contains sufficient valid head and tail room to be forwarded. Reported-by: NErik Hugne <erik.hugne@gmail.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 10月, 2015 2 次提交
-
-
由 Jon Paul Maloy 提交于
The code path for receiving broadcast packets is currently distinct from the unicast path. This leads to unnecessary code and data duplication, something that can be avoided with some effort. We now introduce separate per-peer tipc_link instances for handling broadcast packet reception. Each receive link keeps a pointer to the common, single, broadcast link instance, and can hence handle release and retransmission of send buffers as if they belonged to the own instance. Furthermore, we let each unicast link instance keep a reference to both the pertaining broadcast receive link, and to the common send link. This makes it possible for the unicast links to easily access data for broadcast link synchronization, as well as for carrying acknowledges for received broadcast packets. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
This commit simplifies the broadcast link transmission function, by leveraging previous changes to the link transmission function and the broadcast transmission link life cycle. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 10月, 2015 1 次提交
-
-
由 Jon Paul Maloy 提交于
The current code for message reassembly is erroneously assuming that the the first arriving fragment buffer always is linear, and then goes ahead resetting the fragment list of that buffer in anticipation of more arriving fragments. However, if the buffer already happens to be non-linear, we will inadvertently drop the already attached fragment list, and later on trig a BUG() in __pskb_pull_tail(). We see this happen when running fragmented TIPC multicast across UDP, something made possible since commit d0f91938 ("tipc: add ip/udp media type") We fix this by not resetting the fragment list when the buffer is non- linear, and by initiatlizing our private fragment list tail pointer to the tail of the existing fragment list. Fixes: commit d0f91938 ("tipc: add ip/udp media type") Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 10月, 2015 1 次提交
-
-
由 Jon Paul Maloy 提交于
After the previous commits, we are guaranteed that no packets of type LINK_PROTOCOL or with illegal sequence numbers will be attempted added to the link deferred queue. This makes it possible to make some simplifications to the sorting algorithm in the function tipc_skb_queue_sorted(). We also alter the function so that it will drop packets if one with the same seqeunce number is already present in the queue. This is necessary because we have identified weird packet sequences, involving duplicate packets, where a legitimate in-sequence packet may advance to the head of the queue without being detected and de-queued. Finally, we make this function outline, since it will now be called only in exceptional cases. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 9月, 2015 1 次提交
-
-
由 Erik Hugne 提交于
The msg pointer into header may change after skb linearization. We must reinitialize it after calling skb_linearize to prevent operating on a freed or invalid pointer. Signed-off-by: NErik Hugne <erik.hugne@ericsson.com> Reported-by: NTamás Végh <tamas.vegh@ericsson.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 7月, 2015 3 次提交
-
-
由 Jon Paul Maloy 提交于
When a message is received in a socket, one of the call chains tipc_sk_rcv()->tipc_sk_enqueue()->filter_rcv()(->tipc_sk_proto_rcv()) or tipc_sk_backlog_rcv()->filter_rcv()(->tipc_sk_proto_rcv()) are followed. At each of these levels we may encounter situations where the message may need to be rejected, or a new message produced for transfer back to the sender. Despite recent improvements, the current code for doing this is perceived as awkward and hard to follow. Leveraging the two previous commits in this series, we now introduce a more uniform handling of such situations. We let each of the functions in the chain itself produce/reverse the message to be returned to the sender, but also perform the actual forwarding. This simplifies the necessary logics within each function. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
Currently, we use the code sequence if (msg_reverse()) tipc_link_xmit_skb() at numerous locations in socket.c. The preparation of arguments for these calls, as well as the sequence itself, makes the code unecessarily complex. In this commit, we introduce a new function, tipc_sk_respond(), that performs this call combination. We also replace some, but not yet all, of these explicit call sequences with calls to the new function. Notably, we let the function tipc_sk_proto_rcv() use the new function to directly send out PROBE_REPLY messages, instead of deferring this to the calling tipc_sk_rcv() function, as we do now. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
The shortest TIPC message header, for cluster local CONNECTED messages, is 24 bytes long. With this format, the fields "dest_node" and "orig_node" are optimized away, since they in reality are redundant in this particular case. However, the absence of these fields leads to code inconsistencies that are difficult to handle in some cases, especially when we need to reverse or reject messages at the socket layer. In this commit, we concentrate the handling of the absent fields to one place, by letting the function tipc_msg_reverse() reallocate the buffer and expand the header to 32 bytes when necessary. This means that the socket code now can assume that the two previously absent fields are present in the header when a message needs to be rejected. This opens up for some further simplifications of the socket code. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 5月, 2015 2 次提交
-
-
由 Jon Paul Maloy 提交于
Currently, the packet sequence number is updated and added to each packet at the moment a packet is added to the link backlog queue. This is wasteful, since it forces the code to traverse the send packet list packet by packet when adding them to the backlog queue. It would be better to just splice the whole packet list into the backlog queue when that is the right action to do. In this commit, we do this change. Also, since the sequence numbers cannot now be assigned to the packets at the moment they are added the backlog queue, we do instead calculate and add them at the moment of transmission, when the backlog queue has to be traversed anyway. We do this in the function tipc_link_push_packet(). Reviewed-by: NErik Hugne <erik.hugne@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
The link congestion algorithm used until now implies two problems. - It is too generous towards lower-level messages in situations of high load by giving "absolute" bandwidth guarantees to the different priority levels. LOW traffic is guaranteed 10%, MEDIUM is guaranted 20%, HIGH is guaranteed 30%, and CRITICAL is guaranteed 40% of the available bandwidth. But, in the absence of higher level traffic, the ratio between two distinct levels becomes unreasonable. E.g. if there is only LOW and MEDIUM traffic on a system, the former is guaranteed 1/3 of the bandwidth, and the latter 2/3. This again means that if there is e.g. one LOW user and 10 MEDIUM users, the former will have 33.3% of the bandwidth, and the others will have to compete for the remainder, i.e. each will end up with 6.7% of the capacity. - Packets of type MSG_BUNDLER are created at SYSTEM importance level, but only after the packets bundled into it have passed the congestion test for their own respective levels. Since bundled packets don't result in incrementing the level counter for their own importance, only occasionally for the SYSTEM level counter, they do in practice obtain SYSTEM level importance. Hence, the current implementation provides a gap in the congestion algorithm that in the worst case may lead to a link reset. We now refine the congestion algorithm as follows: - A message is accepted to the link backlog only if its own level counter, and all superior level counters, permit it. - The importance of a created bundle packet is set according to its contents. A bundle packet created from messges at levels LOW to CRITICAL is given importance level CRITICAL, while a bundle created from a SYSTEM level message is given importance SYSTEM. In the latter case only subsequent SYSTEM level messages are allowed to be bundled into it. This solves the first problem described above, by making the bandwidth guarantee relative to the total number of users at all levels; only the upper limit for each level remains absolute. In the example described above, the single LOW user would use 1/11th of the bandwidth, the same as each of the ten MEDIUM users, but he still has the same guarantee against starvation as the latter ones. The fix also solves the second problem. If the CRITICAL level is filled up by bundle packets of that level, no lower level packets will be accepted any more. Suggested-by: NGergely Kiss <gergely.kiss@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 4月, 2015 1 次提交
-
-
由 Jon Paul Maloy 提交于
When a bearer is disabled manually, all its links have to be reset and deleted. However, if there is a remaining, parallel link ready to take over a deleted link's traffic, we currently delay the delete of the removed link until the failover procedure is finished. This is because the remaining link needs to access state from the reset link, such as the last received packet number, and any partially reassembled buffer, in order to perform a successful failover. In this commit, we do instead move the state data over to the new link, so that it can fulfill the procedure autonomously, without accessing any data on the old link. This means that we can now proceed and delete all pertaining links immediately when a bearer is disabled. This saves us from some unnecessary complexity in such situations. We also choose to change the confusing definitions CHANGEOVER_PROTOCOL, ORIGINAL_MSG and DUPLICATE_MSG to the more descriptive TUNNEL_PROTOCOL, FAILOVER_MSG and SYNCH_MSG respectively. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 3月, 2015 1 次提交
-
-
由 Jon Paul Maloy 提交于
A message sent to a node after a successful name table lookup may still find that the destination socket has disappeared, because distribution of name table updates is non-atomic. If so, the message will be rejected back to the sender with error code TIPC_ERR_NO_PORT. If the source socket of the message has disappeared in the meantime, the message should be dropped. However, in the currrent code, the message will instead be subject to an unwanted tertiary lookup, because the function tipc_msg_lookup_dest() doesn't check if there is an error code present in the message before performing the lookup. In the worst case, the message may now find the old destination again, and be redirected once more, instead of being dropped directly as it should be. A second bug in this function is that the "prev_node" field in the message is not updated after successful lookup, something that may have unpredictable consequences. The problems arising from those bugs occur very infrequently. The third change in this function; the test on msg_reroute_msg_cnt() is purely cosmetic, reflecting that the returned value never can be negative. This commit corrects the two bugs described above. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 3月, 2015 5 次提交
-
-
由 Jon Paul Maloy 提交于
Messages transferred by TIPC are assigned an "importance priority", -an integer value indicating how to treat the message when there is link or destination socket congestion. There is no separate header field for this value. Instead, the message user values have been chosen in ascending order according to perceived importance, so that the message user field can be used for this. This is not a good solution. First, we have many more users than the needed priority levels, so we end up with treating more priority levels than necessary. Second, the user field cannot always accurately reflect the priority of the message. E.g., a message fragment packet should really have the priority of the enveloped user data message, and not the priority of the MSG_FRAGMENTER user. Until now, we have been working around this problem in different ways, but it is now time to implement a consistent way of handling such priorities, although still within the constraint that we cannot allocate any more bits in the regular data message header for this. In this commit, we define a new priority level, TIPC_SYSTEM_IMPORTANCE, that will be the only one used apart from the four (lower) user data levels. All non-data messages map down to this priority. Furthermore, we take some free bits from the MSG_FRAGMENTER header and allocate them to store the priority of the enveloped message. We then adjust the functions msg_importance()/msg_set_importance() so that they read/set the correct header fields depending on user type. This small protocol change is fully compatible, because the code at the receiving end of a link currently reads the importance level only from user data messages, where there is no change. Reviewed-by: NErik Hugne <erik.hugne@ericsson.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
struct tipc_link contains one single queue for outgoing packets, where both transmitted and waiting packets are queued. This infrastructure is hard to maintain, because we need to keep a number of fields to keep track of which packets are sent or unsent, and the number of packets in each category. A lot of code becomes simpler if we split this queue into a transmission queue, where sent/unacknowledged packets are kept, and a backlog queue, where we keep the not yet sent packets. In this commit we do this separation. Reviewed-by: NErik Hugne <erik.hugne@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
When we currently extract a bundled buffer from a message bundle in the function tipc_msg_extract(), we allocate a new buffer and explicitly copy the linear data area. This is unnecessary, since we can just clone the buffer and do skb_pull() on the clone to move the data pointer to the correct position. This is what we do in this commit. Reviewed-by: NErik Hugne <erik.hugne@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
Currently, TIPC linearizes all incoming buffers directly at reception before passing them upwards in the stack. This is clearly a waste of CPU resources, and must be avoided. In this commit, we eliminate this unnecessary linearization. We still ensure that at least the message header is linear, and that the buffer is linearized where this is still needed, i.e. when unbundling and when reversing messages. In addition, we ensure that fragmented messages are validated after reassembly before delivering them upwards in the stack. Reviewed-by: NErik Hugne <erik.hugne@ericsson.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
The function link_buf_validate() is in reality re-entrant and context independent, and will in later commits be called from several locations. Therefore, we move it to msg.c, make it outline and rename the it to tipc_msg_validate(). We also redesign the function to make proper use of pskb_may_pull() Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2015 3 次提交
-
-
由 Jon Paul Maloy 提交于
TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
The function tipc_msg_eval() is in reality doing two related, but different tasks. First it tries to find a new destination for named messages, in case there was no first lookup, or if the first lookup failed. Second, it does what its name suggests, evaluating the validity of the message and its destination, and returning an appropriate error code depending on the result. This is confusing, and in this commit we choose to break it up into two functions. A new function, tipc_msg_lookup_dest(), first attempts to find a new destination, if the message is of the right type. If this lookup fails, or if the message should not be subject to a second lookup, the already existing tipc_msg_reverse() is called. This function performs prepares the message for rejection, if applicable. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Paul Maloy 提交于
The most common usage of namespace information is when we fetch the own node addess from the net structure. This leads to a lot of passing around of a parameter of type 'struct net *' between functions just to make them able to obtain this address. However, in many cases this is unnecessary. The own node address is readily available as a member of both struct tipc_sock and tipc_link, and can be fetched from there instead. The fact that the vast majority of functions in socket.c and link.c anyway are maintaining a pointer to their respective base structures makes this option even more compelling. In this commit, we introduce the inline functions tsk_own_node() and link_own_node() to make it easy for functions to fetch the node address from those structs instead of having to pass along and dereference the namespace struct. In particular, we make calls to the msg_xx() functions in msg.{h,c} context independent by directly passing them the own node address as parameter when needed. Those functions should be regarded as leaves in the code dependency tree, and it is hence desirable to keep them namspace unaware. Apart from a potential positive effect on cache behavior, these changes make it easier to introduce the changes that will follow later in this series. Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 2月, 2015 1 次提交
-
-
由 Al Viro 提交于
This one needs to copy the same data from user potentially more than once. Sadly, MTU changes can trigger that ;-/ Cc: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 13 1月, 2015 4 次提交
-
-
由 Ying Xue 提交于
If net namespace is supported in tipc, each namespace will be treated as a separate tipc node. Therefore, every namespace must own its private tipc node address. This means the "tipc_own_addr" global variable of node address must be moved to tipc_net structure to satisfy the requirement. It's turned out that users also can assign node address for every namespace. Signed-off-by: NYing Xue <ying.xue@windriver.com> Tested-by: NTero Aho <Tero.Aho@coriant.com> Reviewed-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Ying Xue 提交于
TIPC name table is used to store the mapping relationship between TIPC service name and socket port ID. When tipc supports namespace, it allows users to publish service names only owned by a certain namespace. Therefore, every namespace must have its private name table to prevent service names published to one namespace from being contaminated by other service names in another namespace. Therefore, The name table global variable (ie, nametbl) and its lock must be moved to tipc_net structure, and a parameter of namespace must be added for necessary functions so that they can obtain name table variable defined in tipc_net structure. Signed-off-by: NYing Xue <ying.xue@windriver.com> Tested-by: NTero Aho <Tero.Aho@coriant.com> Reviewed-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Ying Xue 提交于
Involve namespace infrastructure, make the "tipc_net_id" global variable aware of per namespace, and rename it to "net_id". In order that the conversion can be successfully done, an instance of networking namespace must be passed to relevant functions, allowing them to access the "net_id" variable of per namespace. Signed-off-by: NYing Xue <ying.xue@windriver.com> Tested-by: NTero Aho <Tero.Aho@coriant.com> Reviewed-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Ying Xue 提交于
Only the works of initializing and shutting down tipc module are done in core.h and core.c files, so all stuffs which are not closely associated with the two tasks should be moved to appropriate places. Signed-off-by: NYing Xue <ying.xue@windriver.com> Tested-by: NTero Aho <Tero.Aho@coriant.com> Reviewed-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 12月, 2014 1 次提交
-
-
由 Al Viro 提交于
Note that the code _using_ ->msg_iter at that point will be very unhappy with anything other than unshifted iovec-backed iov_iter. We still need to convert users to proper primitives. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 27 11月, 2014 1 次提交
-
-
由 Ying Xue 提交于
Use standard SKB list APIs associated with struct sk_buff_head to manage socket outgoing packet chain and name table outgoing packet chain, having relevant code simpler and more readable. Signed-off-by: NYing Xue <ying.xue@windriver.com> Reviewed-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-