1. 23 11月, 2011 1 次提交
  2. 09 11月, 2011 1 次提交
  3. 12 10月, 2010 1 次提交
    • G
      dccp: fix the adjustments to AWL and SWL · 0b53d460
      Gerrit Renker 提交于
      This fixes a problem and a potential loophole with regard to seqno/ackno
      validity: currently the initial adjustments to AWL/SWL are only performed
      once at the begin of the connection, during the handshake.
      
      Since the Sequence Window feature is always greater than Wmin=32 (7.5.2),
      it is however necessary to perform these adjustments at least for the first
      W/W' (variables as per 7.5.1) packets in the lifetime of a connection.
      
      This requirement is complicated by the fact that W/W' can change at any time
      during the lifetime of a connection.
      
      Therefore it is better to perform that safety check each time SWL/AWL are
      updated, as implemented by the patch.
      
      A second problem solved by this patch is that the remote/local Sequence Window
      feature values (which set the bounds for AWL/SWL/SWH) are undefined until the
      feature negotiation has completed.
      
      During the initial handshake we have more stringent sequence number protection;
      the changes added by this patch effect that {A,S}W{L,H} are within the correct
      bounds at the instant that feature negotiation completes (since the SeqWin
      feature activation handlers call dccp_update_gsr/gss()).
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      0b53d460
  4. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  5. 06 3月, 2010 1 次提交
  6. 03 12月, 2009 1 次提交
  7. 22 1月, 2009 1 次提交
    • G
      dccp: Implement both feature-local and feature-remote Sequence Window feature · 792b4878
      Gerrit Renker 提交于
      This adds full support for local/remote Sequence Window feature, from which the
        * sequence-number-validity (W) and
        * acknowledgment-number-validity (W') windows
      derive as specified in RFC 4340, 7.5.3.
      
      Specifically, the following is contained in this patch:
        * integrated new socket fields into dccp_sk;
        * updated the update_gsr/gss routines with regard to these fields;
        * updated handler code: the Sequence Window feature is located at the TX side,
          so the local feature is meant if the handler-rx flag is false;
        * the initialisation of `rcv_wnd' in reqsk is removed, since
          - rcv_wnd is not used by the code anywhere;
          - sequence number checks are not done in the LISTEN state (cf. 7.5.3);
          - dccp_check_req checks the Ack number validity more rigorously;
        * the `struct dccp_minisock' became empty and is now removed.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      792b4878
  8. 08 12月, 2008 4 次提交
    • G
      dccp ccid-2: Phase out the use of boolean Ack Vector sysctl · 6fdd34d4
      Gerrit Renker 提交于
      This removes the use of the sysctl and the minisock variable for the Send Ack
      Vector feature, as it now is handled fully dynamically via feature negotiation
      (i.e. when CCID-2 is enabled, Ack Vectors are automatically enabled as per
       RFC 4341, 4.).
      
      Using a sysctl in parallel to this implementation would open the door to
      crashes, since much of the code relies on tests of the boolean minisock /
      sysctl variable. Thus, this patch replaces all tests of type
      
      	if (dccp_msk(sk)->dccpms_send_ack_vector)
      		/* ... */
      with
      	if (dp->dccps_hc_rx_ackvec != NULL)
      		/* ... */
      
      The dccps_hc_rx_ackvec is allocated by the dccp_hdlr_ackvec() when feature
      negotiation concluded that Ack Vectors are to be used on the half-connection.
      Otherwise, it is NULL (due to dccp_init_sock/dccp_create_openreq_child),
      so that the test is a valid one.
      
      The activation handler for Ack Vectors is called as soon as the feature
      negotiation has concluded at the
       * server when the Ack marking the transition RESPOND => OPEN arrives;
       * client after it has sent its ACK, marking the transition REQUEST => PARTOPEN.
      
      Adding the sequence number of the Response packet to the Ack Vector has been
      removed, since
       (a) connection establishment implies that the Response has been received;
       (b) the CCIDs only look at packets received in the (PART)OPEN state, i.e.
           this entry will always be ignored;
       (c) it can not be used for anything useful - to detect loss for instance, only
           packets received after the loss can serve as pseudo-dupacks.
      
      There was a FIXME to change the error code when dccp_ackvec_add() fails.
      I removed this after finding out that:
       * the check whether ackno < ISN is already made earlier,
       * this Response is likely the 1st packet with an Ackno that the client gets,
       * so when dccp_ackvec_add() fails, the reason is likely not a packet error.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6fdd34d4
    • G
      dccp: Remove manual influence on NDP Count feature · 4098dce5
      Gerrit Renker 提交于
      Updating the NDP count feature is handled automatically now:
       * for CCID-2 it is disabled, since the code does not use NDP counts;
       * for CCID-3 it is enabled, as NDP counts are used to determine loss lengths.
      
      Allowing the user to change NDP values leads to unpredictable and failing
      behaviour, since it is then possible to disable NDP counts even when they
      are needed (e.g. in CCID-3).
      
      This means that only those user settings are sensible that agree with the
      values for Send NDP Count implied by the choice of CCID. But those settings
      are already activated by the feature negotiation (CCID dependency tracking),
      hence this form of support is redundant.
      
      At startup the initialisation of the NDP count feature uses the default
      value of 0, which is done implicitly by the zeroing-out of the socket when
      it is allocated. If the choice of CCID or feature negotiation enables NDP
      count, this will then be updated via the NDP activation handler.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4098dce5
    • G
      dccp: Remove obsolete parts of the old CCID interface · 0049bab5
      Gerrit Renker 提交于
      The TX/RX CCIDs of the minisock are now redundant: similar to the Ack Vector
      case, their value equals initially that of the sysctl, but at the end of
      feature negotiation may be something different.
      
      The old interface removed by this patch thus has been replaced by the newer
      interface to dynamically query the currently loaded CCIDs.
      
      Also removed are the constructors for the TX CCID and the RX CCID, since the
      switch "rx <-> non-rx" is done by the handler in minisocks.c (and the handler
      is the only place in the code where CCIDs are loaded).
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      0049bab5
    • G
      dccp: Integration of dynamic feature activation - part 2 (server side) · 192b27ff
      Gerrit Renker 提交于
      This patch integrates the activation of features at the end of negotiation
      into the server-side code.
      
      Note regarding the removal of 'const':
      --------------------------------------
       The 'const' attribute has been removed from 'dreq' since dccp_activate_values()
       needs to operate on dreq's feature list. Part of the activation is to remove
       those options from the list that have already been confirmed, hence it is not
       purely read-only.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      192b27ff
  9. 17 11月, 2008 1 次提交
    • G
      dccp: Deprecate Ack Ratio sysctl · dd9c0e36
      Gerrit Renker 提交于
      This patch deprecates the Ack Ratio sysctl, since
       * Ack Ratio is entirely ignored by CCID-3 and CCID-4,
       * Ack Ratio currently doesn't work in CCID-2 (i.e. is always set to 1);
       * even if it would work in CCID-2, there is no point for a user to change it:
         - Ack Ratio is constrained by cwnd (RFC 4341, 6.1.2),
         - if Ack Ratio > cwnd, the system resorts to spurious RTO timeouts
           (since waiting for Acks which will never arrive in this window),
         - cwnd is not a user-configurable value.
      
      The only reasonable place for Ack Ratio is to print it for debugging. It is
      planned to do this later on, as part of e.g. dccp_probe.
      
      With this patch Ack Ratio is now under full control of feature negotiation:
       * Ack Ratio is resolved as a dependency of the selected CCID;
       * if the chosen CCID supports it (i.e. CCID == CCID-2), Ack Ratio is set to
         the default of 2, following RFC 4340, 11.3 - "New connections start with Ack
         Ratio 2 for both endpoints";
       * what happens then is part of another patch set, since it concerns the
         dynamic update of Ack Ratio while the connection is in full flight.
      
      Thanks to Tomasz Grobelny for discussion leading up to this patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      dd9c0e36
  10. 05 11月, 2008 1 次提交
  11. 20 10月, 2008 1 次提交
  12. 09 9月, 2008 1 次提交
  13. 04 9月, 2008 8 次提交
    • G
      dccp: Fix the adjustments to AWL and SWL · bfbddd08
      Gerrit Renker 提交于
      This fixes a problem and a potential loophole with regard to seqno/ackno
      validity: the problem is that the initial adjustments to AWL/SWL were
      only performed at the begin of the connection, during the handshake.
      
      Since the Sequence Window feature is always greater than Wmin=32 (7.5.2), 
      it is however necessary to perform these adjustments at least for the first
      W/W' (variables as per 7.5.1) packets in the lifetime of a connection.
      
      This requirement is complicated by the fact that W/W' can change at any time
      during the lifetime of a connection.
      
      Therefore the consequence is to perform this safety check each time SWL/AWL
      are updated.
      
      A second problem solved by this patch is that the remote/local Sequence Window
      feature values (which set the bounds for AWL/SWL/SWH) are undefined until the
      feature negotiation has completed.
      
      During the initial handshake we have more stringent sequence number protection,
      the changes added by this patch effect that {A,S}W{L,H} are within the correct
      bounds at the instant that feature negotiation completes (since the SeqWin
      feature activation handlers call dccp_update_gsr/gss()). 
      
      A detailed rationale is below -- can be removed from the commit message.
      
      
      1. Server sequence number checks during initial handshake
      ---------------------------------------------------------
      The server can not use the fields of the listening socket for seqno/ackno checks
      and thus needs to store all relevant information on a per-connection basis on
      the dccp_request socket. This is a size-constrained structure and has currently
      only ISS (dreq_iss) and ISR (dreq_isr) defined.
      Adding further fields (SW{L,H}, AW{L,H}) would increase the size of the struct
      and it is questionable whether this will have any practical gain. The currently
      implemented solution is as follows.
       * receiving first Request: dccp_v{4,6}_conn_request sets 
                                  ISR := P.seqno, ISS := dccp_v{4,6}_init_sequence()
      
       * sending first Response:  dccp_v{4,6}_send_response via dccp_make_response()	
                                  sets P.seqno := ISS, sets P.ackno := ISR
      
       * receiving retransmitted Request: dccp_check_req() overrides ISR := P.seqno
      
       * answering retransmitted Request: dccp_make_response() sets ISS += 1,
                                          otherwise as per first Response
      
       * completing the handshake: succeeds in dccp_check_req() for the first Ack
                                   where P.ackno == ISS (P.seqno is not tested)
      
       * creating child socket: ISS, ISR are copied from the request_sock
      
      This solution will succeed whenever the server can receive the Request and the
      subsequent Ack in succession, without retransmissions. If there is packet loss,
      the client needs to retransmit until this condition succeeds; it will otherwise
      eventually give up. Adding further fields to the request_sock could increase
      the robustness a bit, in that it would make possible to let a reordered Ack
      (from a retransmitted Response) pass. The argument against such a solution is
      that if the packet loss is not persistent and an Ack gets through, why not
      wait for the one answering the original response: if the loss is persistent, it
      is probably better to not start the connection in the first place.
      
      Long story short: the present design (by Arnaldo) is simple and will likely work
      just as well as a more complicated solution. As a consequence, {A,S}W{L,H} are
      not needed until the moment the request_sock is cloned into the accept queue.
      
      At that stage feature negotiation has completed, so that the values for the local
      and remote Sequence Window feature (7.5.2) are known, i.e. we are now in a better
      position to compute {A,S}W{L,H}.
      
      
      2. Client sequence number checks during initial handshake
      ---------------------------------------------------------
      Until entering PARTOPEN the client does not need the adjustments, since it 
      constrains the Ack window to the packet it sent.
      
       * sending first Request: dccp_v{4,6}_connect() choose ISS, 
                                dccp_connect() then sets GAR := ISS (as per 8.5),
      			  dccp_transmit_skb() (with the previous bug fix) sets
      			         GSS := ISS, AWL := ISS, AWH := GSS
       * n-th retransmitted Request (with previous patch):
      	                  dccp_retransmit_skb() via timer calls
      			  dccp_transmit_skb(), which sets GSS := ISS+n
                                and then AWL := ISS, AWH := ISS+n
      	                  
       * receiving any Response: dccp_rcv_request_sent_state_process() 
      	                   -- accepts packet if AWL <= P.ackno <= AWH;
      			   -- sets GSR = ISR = P.seqno
      
       * sending the Ack completing the handshake: dccp_send_ack() calls 
                                 dccp_transmit_skb(), which sets GSS += 1
      			   and AWL := ISS, AWH := GSS
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      bfbddd08
    • G
      dccp: Implement both feature-local and feature-remote Sequence Window feature · 51c7d4fa
      Gerrit Renker 提交于
      This adds full support for local/remote Sequence Window feature, from which the 
        * sequence-number-validity (W) and 
        * acknowledgment-number-validity (W') windows 
      derive as specified in RFC 4340, 7.5.3. 
      
      Specifically, the following changes are introduced:
        * integrated new socket fields into dccp_sk;
        * updated the update_gsr/gss routines with regard to these fields;
        * updated handler code: the Sequence Window feature is located at the TX side,
          so the local feature is meant if the handler-rx flag is false;
        * the initialisation of `rcv_wnd' in reqsk is removed, since
          - rcv_wnd is not used by the code anywhere;
          - sequence number checks are not done in the LISTEN state (cf. 7.5.3);
          - dccp_check_req checks the Ack number validity more rigorously;
        * the `struct dccp_minisock' became empty and is now removed.
      
      Until the handshake completes with activating negotiated values, the local/remote
      Sequence-Window values are undefined and thus can not reliably be estimated.
      This issue is addressed in a separate patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      51c7d4fa
    • G
      dccp ccid-2: Phase out the use of boolean Ack Vector sysctl · b235dc4a
      Gerrit Renker 提交于
      This removes the use of the sysctl and the minisock variable for the Send Ack
      Vector feature, which is now handled fully dynamically via feature negotiation;
      i.e. when CCID2 is enabled, Ack Vectors are automatically enabled (as per
      RFC 4341, 4.).
      
      Using a sysctl in parallel to this implementation would open the door to
      crashes, since much of the code relies on tests of the boolean minisock /
      sysctl variable. Thus, this patch replaces all tests of type
      
      	if (dccp_msk(sk)->dccpms_send_ack_vector)
      		/* ... */
      with
      	if (dp->dccps_hc_rx_ackvec != NULL)
      		/* ... */
      
      The dccps_hc_rx_ackvec is allocated by the dccp_hdlr_ackvec() when feature
      negotiation concluded that Ack Vectors are to be used on the half-connection.
      Otherwise, it is NULL (due to dccp_init_sock/dccp_create_openreq_child),
      so that the test is a valid one.
      
      The activation handler for Ack Vectors is called as soon as the feature
      negotiation has concluded at the
       * server when the Ack marking the transition RESPOND => OPEN arrives;
       * client after it has sent its ACK, marking the transition REQUEST => PARTOPEN.
      
      Adding the sequence number of the Response packet to the Ack Vector has been 
      removed, since
       (a) connection establishment implies that the Response has been received;
       (b) the CCIDs only look at packets received in the (PART)OPEN state, i.e.
           this entry will always be ignored;
       (c) it can not be used for anything useful - to detect loss for instance, only
           packets received after the loss can serve as pseudo-dupacks.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      b235dc4a
    • G
      dccp: Remove manual influence on NDP Count feature · 68e074bf
      Gerrit Renker 提交于
      Updating the NDP count feature is handled automatically now:
       * for CCID-2 it is disabled, since the code does not use NDP counts;
       * for CCID-3 it is enabled, as NDP counts are used to determine loss lengths.
      
      Allowing the user to change NDP values leads to unpredictable and failing
      behaviour, since it is then possible to disable NDP counts even when they
      are needed (e.g. in CCID-3).
      
      This means that only those user settings are sensible that agree with the
      values for Send NDP Count implied by the choice of CCID. But those settings
      are already activated by the feature negotiation (CCID dependency tracking),
      hence this form of support is redundant.
      
      At startup the initialisation of the NDP count feature is with the default
      value of 0, which is done implicitly by the zeroing-out of the socket when
      it is allocated. If the choice of CCID or feature negotiation enables NDP
      count, this will then be updated via the NDP activation handler.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      68e074bf
    • G
      dccp: Remove obsolete parts of the old CCID interface · 78673e24
      Gerrit Renker 提交于
      The TX/RX CCIDs of the minisock are now redundant: similar to the Ack Vector
      case, their value equals initially that of the sysctl, but at the end of
      feature negotiation may be something different.
      
      The old interface removed by this patch thus has been replaced by the newer
      interface to dynamically query the currently loaded CCIDs earlier in this
      patch set.
      
      Also removed the constructors for the TX CCID and the RX CCID, since the
      switch rx/non-rx is done by the handler in minisocks.c (and the handler is
      the only place in the code where CCIDs are loaded).
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      78673e24
    • G
      dccp: Integration of dynamic feature activation - part 2 (server side) · e70cacb9
      Gerrit Renker 提交于
      This patch integrates the activation of features at the end of negotiation
      into the server-side code.
      
      Note: 
        In dccp_create_openreq_child the request_sock argument is no longer constant,
        since dccp_activate_values() uses the feature-negotiation list on dreq to sort
        out the initialisation values for the different features of the child socket;
        and purges this queue after use (but the `req' argument to openreq_child
        can and does still remain constant).
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      e70cacb9
    • G
      dccp: Deprecate Ack Ratio sysctl · 17c30b40
      Gerrit Renker 提交于
      This patch deprecates the Ack Ratio sysctl, since
       * Ack Ratio is entirely ignored by CCID-3 and CCID-4,
       * Ack Ratio currently doesn't work in CCID-2 (i.e. is always set to 1);
       * even if it would work in CCID-2, there is no point for a user to change it:
         - Ack Ratio is constrained by cwnd (RFC 4341, 6.1.2),
         - if Ack Ratio > cwnd, the system resorts to spurious RTO timeouts 
           (since waiting for Acks which will never arrive in this window),
         - cwnd is not a user-configurable value.	
      
      The only reasonable place for Ack Ratio is to print it for debugging. It is
      planned to do this later on, as part of e.g. dccp_probe.
      
      With this patch Ack Ratio is now under full control of feature negotiation:
       * Ack Ratio is resolved as a dependency of the selected CCID;
       * if the chosen CCID supports it (i.e. CCID == CCID-2), Ack Ratio is set to
         the default of 2, following RFC 4340, 11.3 - "New connections start with Ack
         Ratio 2 for both endpoints";
       * what happens then is part of another patch set, since it concerns the 
         dynamic update of Ack Ratio while the connection is in full flight.
      
      Thanks to Tomasz Grobelny for discussion leading up to this patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      17c30b40
    • G
      dccp: Per-socket initialisation of feature negotiation · 828755ce
      Gerrit Renker 提交于
      This provides feature-negotiation initialisation for both DCCP sockets and
      DCCP request_sockets, to support feature negotiation during connection setup.
      
      It also resolves a FIXME regarding the congestion control initialisation.
      
      Thanks to Wei Yongjun for help with the IPv6 side of this patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      828755ce
  14. 07 8月, 2008 1 次提交
    • G
      tcp: Fix kernel panic when calling tcp_v(4/6)_md5_do_lookup · 6edafaaf
      Gui Jianfeng 提交于
      If the following packet flow happen, kernel will panic.
      MathineA			MathineB
      		SYN
      	---------------------->    
              	SYN+ACK
      	<----------------------
      		ACK(bad seq)
      	---------------------->
      When a bad seq ACK is received, tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr))
      is finally called by tcp_v4_reqsk_send_ack(), but the first parameter(skb->sk) is 
      NULL at that moment, so kernel panic happens.
      This patch fixes this bug.
      
      OOPS output is as following:
      [  302.812793] IP: [<c05cfaa6>] tcp_v4_md5_do_lookup+0x12/0x42
      [  302.817075] Oops: 0000 [#1] SMP 
      [  302.819815] Modules linked in: ipv6 loop dm_multipath rtc_cmos rtc_core rtc_lib pcspkr pcnet32 mii i2c_piix4 parport_pc i2c_core parport ac button ata_piix libata dm_mod mptspi mptscsih mptbase scsi_transport_spi sd_mod scsi_mod crc_t10dif ext3 jbd mbcache uhci_hcd ohci_hcd ehci_hcd [last unloaded: scsi_wait_scan]
      [  302.849946] 
      [  302.851198] Pid: 0, comm: swapper Not tainted (2.6.27-rc1-guijf #5)
      [  302.855184] EIP: 0060:[<c05cfaa6>] EFLAGS: 00010296 CPU: 0
      [  302.858296] EIP is at tcp_v4_md5_do_lookup+0x12/0x42
      [  302.861027] EAX: 0000001e EBX: 00000000 ECX: 00000046 EDX: 00000046
      [  302.864867] ESI: ceb69e00 EDI: 1467a8c0 EBP: cf75f180 ESP: c0792e54
      [  302.868333]  DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068
      [  302.871287] Process swapper (pid: 0, ti=c0792000 task=c0712340 task.ti=c0746000)
      [  302.875592] Stack: c06f413a 00000000 cf75f180 ceb69e00 00000000 c05d0d86 000016d0 ceac5400 
      [  302.883275]        c05d28f8 000016d0 ceb69e00 ceb69e20 681bf6e3 00001000 00000000 0a67a8c0 
      [  302.890971]        ceac5400 c04250a3 c06f413a c0792eb0 c0792edc cf59a620 cf59a620 cf59a634 
      [  302.900140] Call Trace:
      [  302.902392]  [<c05d0d86>] tcp_v4_reqsk_send_ack+0x17/0x35
      [  302.907060]  [<c05d28f8>] tcp_check_req+0x156/0x372
      [  302.910082]  [<c04250a3>] printk+0x14/0x18
      [  302.912868]  [<c05d0aa1>] tcp_v4_do_rcv+0x1d3/0x2bf
      [  302.917423]  [<c05d26be>] tcp_v4_rcv+0x563/0x5b9
      [  302.920453]  [<c05bb20f>] ip_local_deliver_finish+0xe8/0x183
      [  302.923865]  [<c05bb10a>] ip_rcv_finish+0x286/0x2a3
      [  302.928569]  [<c059e438>] dev_alloc_skb+0x11/0x25
      [  302.931563]  [<c05a211f>] netif_receive_skb+0x2d6/0x33a
      [  302.934914]  [<d0917941>] pcnet32_poll+0x333/0x680 [pcnet32]
      [  302.938735]  [<c05a3b48>] net_rx_action+0x5c/0xfe
      [  302.941792]  [<c042856b>] __do_softirq+0x5d/0xc1
      [  302.944788]  [<c042850e>] __do_softirq+0x0/0xc1
      [  302.948999]  [<c040564b>] do_softirq+0x55/0x88
      [  302.951870]  [<c04501b1>] handle_fasteoi_irq+0x0/0xa4
      [  302.954986]  [<c04284da>] irq_exit+0x35/0x69
      [  302.959081]  [<c0405717>] do_IRQ+0x99/0xae
      [  302.961896]  [<c040422b>] common_interrupt+0x23/0x28
      [  302.966279]  [<c040819d>] default_idle+0x2a/0x3d
      [  302.969212]  [<c0402552>] cpu_idle+0xb2/0xd2
      [  302.972169]  =======================
      [  302.974274] Code: fc ff 84 d2 0f 84 df fd ff ff e9 34 fe ff ff 83 c4 0c 5b 5e 5f 5d c3 90 90 57 89 d7 56 53 89 c3 50 68 3a 41 6f c0 e8 e9 55 e5 ff <8b> 93 9c 04 00 00 58 85 d2 59 74 1e 8b 72 10 31 db 31 c9 85 f6 
      [  303.011610] EIP: [<c05cfaa6>] tcp_v4_md5_do_lookup+0x12/0x42 SS:ESP 0068:c0792e54
      [  303.018360] Kernel panic - not syncing: Fatal exception in interrupt
      Signed-off-by: NGui Jianfeng <guijianfeng@cn.fujitsu.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6edafaaf
  15. 11 6月, 2008 1 次提交
  16. 01 3月, 2008 1 次提交
  17. 29 1月, 2008 2 次提交
    • G
      [DCCP]: Handle timestamps on Request/Response exchange separately · b4d4f7c7
      Gerrit Renker 提交于
      In DCCP, timestamps can occur on packets anytime, CCID3 uses a timestamp(/echo) on the Request/Response
      exchange. This patch addresses the following situation:
      	* timestamps are recorded on the listening socket;
      	* Responses are sent from dccp_request_sockets;
      	* suppose two connections reach the listening socket with very small time in between:
      	* the first timestamp value gets overwritten by the second connection request.
      
      This is not really good, so this patch separates timestamps into
       * those which are received by the server during the initial handshake (on dccp_request_sock);
       * those which are received by the client or the client after connection establishment.
      
      As before, a timestamp of 0 is regarded as indicating that no (meaningful) timestamp has been
      received (in addition, a warning message is printed if hosts send 0-valued timestamps).
      
      The timestamp-echoing now works as follows:
       * when a timestamp is present on the initial Request, it is placed into dreq, due to the
         call to dccp_parse_options in dccp_v{4,6}_conn_request;
       * when a timestamp is present on the Ack leading from RESPOND => OPEN, it is copied over
         from the request_sock into the child cocket in dccp_create_openreq_child;
       * timestamps received on an (established) dccp_sock are treated as before.
      
      Since Elapsed Time is measured in hundredths of milliseconds (13.2), the new dccp_timestamp()
      function is used, as it is expected that the time between receiving the timestamp and
      sending the timestamp echo will be very small against the wrap-around time. As a byproduct,
      this allows smaller timestamping-time fields.
      
      Furthermore, inserting the Timestamp Echo option has been taken out of the block starting with
      '!dccp_packet_without_ack()', since Timestamp Echo can be carried on any packet (5.8 and 13.3).
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      b4d4f7c7
    • G
      [DCCP]: Add (missing) option parsing to request_sock processing · 8109616e
      Gerrit Renker 提交于
      This adds option-parsing code to processing of Acks in the listening state
      on request_socks on the server, serving two purposes
       (i)  resolves a FIXME (removed);
       (ii) paves the way for feature-negotiation during connection-setup.
      
      There is an intended subtlety here with regard to dccp_check_req:
      
       Parsing options happens only after testing whether the received packet is
       a retransmitted Request.  Otherwise, if the Request contained (a possibly
       large number of) feature-negotiation options, recomputing state would have to
       happen each time a retransmitted Request arrives, which opens the door to an
       easy DoS attack.  Since in a genuine retransmission the options should not be
       different from the original, reusing the already computed state seems better.
      
       The other point is - if there are timestamp options on the Request, they will
       not be answered; which means that in the presence of retransmission (likely
       due to loss and/or other problems), the use of Request/Response RTT sampling
       is suspended, so that startup problems here do not propagate.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Signed-off-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      Signed-off-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8109616e
  18. 11 10月, 2007 2 次提交
  19. 26 4月, 2007 1 次提交
  20. 07 3月, 2007 1 次提交
  21. 12 12月, 2006 1 次提交
  22. 03 12月, 2006 7 次提交