- 08 2月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
The names are all 'autogroup', not 'auto_group' - so rename the kernel/sched/auto_group.[ch] to match the existing nomenclature. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 2月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 02 4月, 2016 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Add a new cpufreq scaling governor, called "schedutil", that uses scheduler-provided CPU utilization information as input for making its decisions. Doing that is possible after commit 34e2c555 (cpufreq: Add mechanism for registering utilization update callbacks) that introduced cpufreq_update_util() called by the scheduler on utilization changes (from CFS) and RT/DL task status updates. In particular, CPU frequency scaling decisions may be based on the the utilization data passed to cpufreq_update_util() by CFS. The new governor is relatively simple. The frequency selection formula used by it depends on whether or not the utilization is frequency-invariant. In the frequency-invariant case the new CPU frequency is given by next_freq = 1.25 * max_freq * util / max where util and max are the last two arguments of cpufreq_update_util(). In turn, if util is not frequency-invariant, the maximum frequency in the above formula is replaced with the current frequency of the CPU: next_freq = 1.25 * curr_freq * util / max The coefficient 1.25 corresponds to the frequency tipping point at (util / max) = 0.8. All of the computations are carried out in the utilization update handlers provided by the new governor. One of those handlers is used for cpufreq policies shared between multiple CPUs and the other one is for policies with one CPU only (and therefore it doesn't need to use any extra synchronization means). The governor supports fast frequency switching if that is supported by the cpufreq driver in use and possible for the given policy. In the fast switching case, all operations of the governor take place in its utilization update handlers. If fast switching cannot be used, the frequency switch operations are carried out with the help of a work item which only calls __cpufreq_driver_target() (under a mutex) to trigger a frequency update (to a value already computed beforehand in one of the utilization update handlers). Currently, the governor treats all of the RT and DL tasks as "unknown utilization" and sets the frequency to the allowed maximum when updated from the RT or DL sched classes. That heavy-handed approach should be replaced with something more subtle and specifically targeted at RT and DL tasks. The governor shares some tunables management code with the "ondemand" and "conservative" governors and uses some common definitions from cpufreq_governor.h, but apart from that it is stand-alone. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
-
- 23 3月, 2016 1 次提交
-
-
由 Dmitry Vyukov 提交于
kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NKees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 3月, 2016 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Create cpufreq.c under kernel/sched/ and move the cpufreq code related to the scheduler to that file and to sched.h. Redefine cpufreq_update_util() as a static inline function to avoid function calls at its call sites in the scheduler code (as suggested by Peter Zijlstra). Also move the definition of struct update_util_data and declaration of cpufreq_set_update_util_data() from include/linux/cpufreq.h to include/linux/sched.h. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
-
- 25 2月, 2016 1 次提交
-
-
由 Peter Zijlstra (Intel) 提交于
The existing wait queue support has support for custom wake up call backs, wake flags, wake key (passed to call back) and exclusive flags that allow wakers to be tagged as exclusive, for limiting the number of wakers. In a lot of cases, none of these features are used, and hence we can benefit from a slimmed down version that lowers memory overhead and reduces runtime overhead. The concept originated from -rt, where waitqueues are a constant source of trouble, as we can't convert the head lock to a raw spinlock due to fancy and long lasting callbacks. With the removal of custom callbacks, we can use a raw lock for queue list manipulations, hence allowing the simple wait support to be used in -rt. [Patch is from PeterZ which is based on Thomas version. Commit message is written by Paul G. Daniel: - Fixed some compile issues - Added non-lazy implementation of swake_up_locked as suggested by Boqun Feng.] Originally-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-rt-users@vger.kernel.org Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1455871601-27484-2-git-send-email-wagi@monom.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 08 5月, 2015 1 次提交
-
-
由 Peter Zijlstra 提交于
I could not find the loadavg code.. turns out it was hidden in a file called proc.c. It further got mingled up with the cruft per rq load indexes (which we really want to get rid of). Move the per rq load indexes into the fair.c load-balance code (that's the only thing that uses them) and rename proc.c to loadavg.c so we can find it again. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> [ Did minor cleanups to the code. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 1月, 2015 1 次提交
-
-
由 Heiko Carstens 提交于
If the kernel is compiled with function tracer support the -pg compile option is passed to gcc to generate extra code into the prologue of each function. This patch replaces the "open-coded" -pg compile flag with a CC_FLAGS_FTRACE makefile variable which architectures can override if a different option should be used for code generation. Acked-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 11 2月, 2014 1 次提交
-
-
由 Nicolas Pitre 提交于
Integration of cpuidle with the scheduler requires that the idle loop be closely integrated with the scheduler proper. Moving cpu/idle.c into the sched directory will allow for a smoother integration, and eliminate a subdirectory which contained only one source file. Signed-off-by: NNicolas Pitre <nico@linaro.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/alpine.LFD.2.11.1401301102210.1652@knanqh.ubzrSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 1月, 2014 2 次提交
-
-
由 Juri Lelli 提交于
Data from tests confirmed that the original active load balancing logic didn't scale neither in the number of CPU nor in the number of tasks (as sched_rt does). Here we provide a global data structure to keep track of deadlines of the running tasks in the system. The structure is composed by a bitmask showing the free CPUs and a max-heap, needed when the system is heavily loaded. The implementation and concurrent access scheme are kept simple by design. However, our measurements show that we can compete with sched_rt on large multi-CPUs machines [1]. Only the push path is addressed, the extension to use this structure also for pull decisions is straightforward. However, we are currently evaluating different (in order to decrease/avoid contention) data structures to solve possibly both problems. We are also going to re-run tests considering recent changes inside cpupri [2]. [1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf [2] http://www.spinics.net/lists/linux-rt-users/msg06778.htmlSigned-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dario Faggioli 提交于
Introduces the data structures, constants and symbols needed for SCHED_DEADLINE implementation. Core data structure of SCHED_DEADLINE are defined, along with their initializers. Hooks for checking if a task belong to the new policy are also added where they are needed. Adds a scheduling class, in sched/dl.c and a new policy called SCHED_DEADLINE. It is an implementation of the Earliest Deadline First (EDF) scheduling algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS) that makes it possible to isolate the behaviour of tasks between each other. The typical -deadline task will be made up of a computation phase (instance) which is activated on a periodic or sporadic fashion. The expected (maximum) duration of such computation is called the task's runtime; the time interval by which each instance need to be completed is called the task's relative deadline. The task's absolute deadline is dynamically calculated as the time instant a task (better, an instance) activates plus the relative deadline. The EDF algorithms selects the task with the smallest absolute deadline as the one to be executed first, while the CBS ensures each task to run for at most its runtime every (relative) deadline length time interval, avoiding any interference between different tasks (bandwidth isolation). Thanks to this feature, also tasks that do not strictly comply with the computational model sketched above can effectively use the new policy. To summarize, this patch: - introduces the data structures, constants and symbols needed; - implements the core logic of the scheduling algorithm in the new scheduling class file; - provides all the glue code between the new scheduling class and the core scheduler and refines the interactions between sched/dl and the other existing scheduling classes. Signed-off-by: NDario Faggioli <raistlin@linux.it> Signed-off-by: NMichael Trimarchi <michael@amarulasolutions.com> Signed-off-by: NFabio Checconi <fchecconi@gmail.com> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 11月, 2013 2 次提交
-
-
由 Peter Zijlstra 提交于
Completions already have their own header file: linux/completion.h Move the implementation out of kernel/sched/core.c and into its own file: kernel/sched/completion.c. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-x2y49rmxu5dljt66ai2lcfuw@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-5q5yqvdaen0rmapwloeaotx3@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 5月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
This large chunk of load calculation code can be easily divorced from the main core.c scheduler file, with only a couple prototypes and externs added to a kernel/sched header. Some recent commits expanded the code and the documentation of it, making it large enough to warrant separation. For example, see: 556061b0, "sched/nohz: Fix rq->cpu_load[] calculations" 5aaa0b7a, "sched/nohz: Fix rq->cpu_load calculations some more" 5167e8d5, "sched/nohz: Rewrite and fix load-avg computation -- again" More importantly, it helps reduce the size of the main sched/core.c by yet another significant amount (~600 lines). Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 4月, 2013 1 次提交
-
-
由 Li Zefan 提交于
Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5155366F.5060404@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 8月, 2012 1 次提交
-
-
由 Frederic Weisbecker 提交于
Extract cputime code from the giant sched/core.c and put it in its own file. This make it easier to deal with this particular area and de-bloat a bit more core.c Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 05 5月, 2012 1 次提交
-
-
由 Thomas Gleixner 提交于
All archs define init_task in the same way (except ia64, but there is no particular reason why ia64 cannot use the common version). Create a generic instance so all archs can be converted over. The config switch is temporary and will be removed when all archs are converted over. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Chen Liqin <liqin.chen@sunplusct.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Howells <dhowells@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@arm.linux.org.uk> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20120503085034.092585287@linutronix.de
-
- 17 11月, 2011 1 次提交
-
-
由 Peter Zijlstra 提交于
There's too many sched*.[ch] files in kernel/, give them their own directory. (No code changed, other than Makefile glue added.) Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-