- 20 4月, 2008 11 次提交
-
-
由 Peter Zijlstra 提交于
De-couple load-balancing from the rb-trees, so that I can change their organization. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Currently FAIR_GROUP sched grows the scheduler latency outside of sysctl_sched_latency, invert this so it stays within. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Implement SMP nice support for the full group hierarchy. On each load-balance action, compile a sched_domain wide view of the full task_group tree. We compute the domain wide view when walking down the hierarchy, and readjust the weights when walking back up. After collecting and readjusting the domain wide view, we try to balance the tasks within the task_groups. The current approach is a naively balance each task group until we've moved the targeted amount of load. Inspired by Srivatsa Vaddsgiri's previous code and Abhishek Chandra's H-SMP paper. XXX: there will be some numerical issues due to the limited nature of SCHED_LOAD_SCALE wrt to representing a task_groups influence on the total weight. When the tree is deep enough, or the task weight small enough, we'll run out of bits. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> CC: Abhishek Chandra <chandra@cs.umn.edu> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Hidetoshi Seto 提交于
[rebased for sched-devel/latest] - Add a new cpuset file, having levels: sched_relax_domain_level - Modify partition_sched_domains() and build_sched_domains() to take attributes parameter passed from cpuset. - Fill newidle_idx for node domains which currently unused but might be required if sched_relax_domain_level become higher. - We can change the default level by boot option 'relax_domain_level='. Signed-off-by: NHidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Dhaval Giani 提交于
This patch allows tasks and groups to exist in the same cfs_rq. With this change the CFS group scheduling follows a 1/(M+N) model from a 1/(1+N) fairness model where M tasks and N groups exist at the cfs_rq level. [a.p.zijlstra@chello.nl: rt bits and assorted fixes] Signed-off-by: NDhaval Giani <dhaval@linux.vnet.ibm.com> Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Balbir Singh reported: > 1:mon> t > [c0000000e7677da0] c000000000067de0 .sys_sched_yield+0x6c/0xbc > [c0000000e7677e30] c000000000008748 syscall_exit+0x0/0x40 > --- Exception: c01 (System Call) at 00000400001d09e4 > SP (4000664cb10) is in userspace > 1:mon> r > cpu 0x1: Vector: 300 (Data Access) at [c0000000e7677aa0] > pc: c000000000068e50: .yield_task_fair+0x94/0xc4 > lr: c000000000067de0: .sys_sched_yield+0x6c/0xbc the check that should have avoided that is: /* * Are we the only task in the tree? */ if (unlikely(rq->load.weight == curr->se.load.weight)) return; But I guess that overlooks rt tasks, they also increase the load. So I guess something like this ought to fix it.. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
it's unused. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
The wakeup buddy logic didn't use the same wakeup granularity logic as the wakeup preemption did, this might cause the ->next buddy to be selected past the point where we would have preempted had the task been a single running instance. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
re-apply: | commit e22ecef1 | Author: Ingo Molnar <mingo@elte.hu> | Date: Fri Mar 14 22:16:08 2008 +0100 | | sched: fix fair sleepers | | Fair sleepers need to scale their latency target down by runqueue | weight. Otherwise busy systems will gain ever larger sleep bonus. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 4月, 2008 1 次提交
-
-
由 Ingo Molnar 提交于
revert "sched: fix fair sleepers" (e22ecef1), because it is causing audio skipping, see: http://bugzilla.kernel.org/show_bug.cgi?id=10428 the patch is correct and the real cause of the skipping is not understood (tracing makes it go away), but time has run out so we'll revert it and re-try in 2.6.26. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 21 3月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
TREE_AVG and APPROX_AVG are initial task placement policies that have been disabled for a long while.. time to remove them. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 19 3月, 2008 5 次提交
-
-
由 Ingo Molnar 提交于
reduce wake-up granularity for better interactivity. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
improve affine wakeups. Maintain the 'overlap' metric based on CFS's sum_exec_runtime - which means the amount of time a task executes after it wakes up some other task. Use the 'overlap' for the wakeup decisions: if the 'overlap' is short, it means there's strong workload coupling between this task and the woken up task. If the 'overlap' is large then the workload is decoupled and the scheduler will move them to separate CPUs more easily. ( Also slightly move the preempt_check within try_to_wake_up() - this has no effect on functionality but allows 'early wakeups' (for still-on-rq tasks) to be correctly accounted as well.) Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
Clean up the code flow. No code changed: kernel/sched.o: text data bss dec hex filename 42521 2858 232 45611 b22b sched.o.before 42521 2858 232 45611 b22b sched.o.after md5: 09b31c44e9aff8666f72773dc433e2df sched.o.before.asm 09b31c44e9aff8666f72773dc433e2df sched.o.after.asm Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
rename 'cpu' to 'prev_cpu'. No code changed: kernel/sched.o: text data bss dec hex filename 42521 2858 232 45611 b22b sched.o.before 42521 2858 232 45611 b22b sched.o.after md5: 09b31c44e9aff8666f72773dc433e2df sched.o.before.asm 09b31c44e9aff8666f72773dc433e2df sched.o.after.asm Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
split out the affine-wakeup bits. No code changed: kernel/sched.o: text data bss dec hex filename 42521 2858 232 45611 b22b sched.o.before 42521 2858 232 45611 b22b sched.o.after md5: 9d76738f1272aa82f0b7affd2f51df6b sched.o.before.asm 09b31c44e9aff8666f72773dc433e2df sched.o.after.asm (the md5's changed because stack slots changed and some registers get scheduled by gcc in a different order - but otherwise the before and after assembly is instruction for instruction equivalent.) Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 15 3月, 2008 4 次提交
-
-
由 Ingo Molnar 提交于
Use the existing calc_delta_mine() calculation for sched_slice(). This saves a divide and simplifies the code because we share it with the other /cfs_rq->load users. It also improves code size: text data bss dec hex filename 42659 2740 144 45543 b1e7 sched.o.before 42093 2740 144 44977 afb1 sched.o.after Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
-
由 Ingo Molnar 提交于
Fair sleepers need to scale their latency target down by runqueue weight. Otherwise busy systems will gain ever larger sleep bonus. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
-
由 Peter Zijlstra 提交于
Currently we schedule to the leftmost task in the runqueue. When the runtimes are very short because of some server/client ping-pong, especially in over-saturated workloads, this will cycle through all tasks trashing the cache. Reduce cache trashing by keeping dependent tasks together by running newly woken tasks first. However, by not running the leftmost task first we could starve tasks because the wakee can gain unlimited runtime. Therefore we only run the wakee if its within a small (wakeup_granularity) window of the leftmost task. This preserves fairness, but does alternate server/client task groups. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Current min_vruntime tracking is incorrect and will cause serious problems when we don't run the leftmost task for some reason. min_vruntime does two things; 1) it's used to determine a forward direction when the u64 vruntime wraps, 2) it's used to track the leftmost vruntime to position newly enqueued tasks from. The current logic advances min_vruntime whenever the current task's vruntime advance. Because the current task may pass the leftmost task still waiting we're failing the second goal. This causes new tasks to be placed too far ahead and thus penalizes their runtime. Fix this by making min_vruntime the min_vruntime of the waiting tasks by tracking it in enqueue/dequeue, and compare against current's vruntime to obtain the absolute minimum when placing new tasks. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 07 3月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Kei Tokunaga reported an interactivity problem when moving tasks between control groups. Tasks would retain their old vruntime when moved between groups, this can cause funny lags. Re-set the vruntime on group move to fit within the new tree. Reported-by: NKei Tokunaga <tokunaga.keiich@jp.fujitsu.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 05 3月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
The following commits cause a number of regressions: commit 58e2d4ca Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Date: Fri Jan 25 21:08:00 2008 +0100 sched: group scheduling, change how cpu load is calculated commit 6b2d7700 Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Date: Fri Jan 25 21:08:00 2008 +0100 sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups Namely: - very frequent wakeups on SMP, reported by PowerTop users. - cacheline trashing on (large) SMP - some latencies larger than 500ms While there is a mergeable patch to fix the latter, the former issues are not fixable in a manner suitable for .25 (we're at -rc3 now). Hence we revert them and try again in v2.6.26. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Tested-by: NAlexey Zaytsev <alexey.zaytsev@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 25 2月, 2008 2 次提交
-
-
由 Ingo Molnar 提交于
Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Balbir Singh 提交于
pick_task_entity() duplicates existing code. This functionality can be easily obtained using rb_last(). Avoid code duplication by using rb_last(). Signed-off-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 01 2月, 2008 2 次提交
-
-
由 Peter Zijlstra 提交于
Michel Dänzr has bisected an interactivity problem with plus-reniced tasks back to this commit: 810e95cc is first bad commit commit 810e95cc Author: Peter Zijlstra <a.p.zijlstra@chello.nl> Date: Mon Oct 15 17:00:14 2007 +0200 sched: another wakeup_granularity fix unit mis-match: wakeup_gran was used against a vruntime fix this by assymetrically scaling the vtime of positive reniced tasks. Bisected-by: NMichel Dänzer <michel@tungstengraphics.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
The reason why we are getting better wakeup latencies for !FAIR_USER_SCHED is because of this snippet of code in place_entity(): if (!initial) { /* sleeps upto a single latency don't count. */ if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se)) ^^^^^^^^^^^^^^^^^^ vruntime -= sysctl_sched_latency; /* ensure we never gain time by being placed backwards. */ vruntime = max_vruntime(se->vruntime, vruntime); } NEW_FAIR_SLEEPERS feature gives credit for sleeping only to tasks and not group-level entities. With the patch attached, I could see that wakeup latencies with FAIR_USER_SCHED are restored to the same level as !FAIR_USER_SCHED. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 26 1月, 2008 11 次提交
-
-
由 Arjan van de Ven 提交于
Right now, the linux kernel (with scheduler statistics enabled) keeps track of the maximum time a process is waiting to be scheduled. While the maximum is a very useful metric, tracking average and total is equally useful (at least for latencytop) to figure out the accumulated effect of scheduler delays. The accumulated effect is important to judge the performance impact of scheduler tuning/behavior. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
print_cfs_stats is callable from interrupt context (sysrq), hence it should not take mutexes. Change it to use RCU since the task group data is RCU freed anyway. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
LatencyTOP kernel infrastructure; it measures latencies in the scheduler and tracks it system wide and per process. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Use HR-timers (when available) to deliver an accurate preemption tick. The regular scheduler tick that runs at 1/HZ can be too coarse when nice level are used. The fairness system will still keep the cpu utilisation 'fair' by then delaying the task that got an excessive amount of CPU time but try to minimize this by delivering preemption points spot-on. The average frequency of this extra interrupt is sched_latency / nr_latency. Which need not be higher than 1/HZ, its just that the distribution within the sched_latency period is important. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Steven Rostedt 提交于
Dmitry Adamushko found that the current implementation of the RT balancing code left out changes to the sched_setscheduler and rt_mutex_setprio. This patch addresses this issue by adding methods to the schedule classes to handle being switched out of (switched_from) and being switched into (switched_to) a sched_class. Also a method for changing of priorities is also added (prio_changed). This patch also removes some duplicate logic between rt_mutex_setprio and sched_setscheduler. Signed-off-by: NSteven Rostedt <srostedt@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Yanmin Zhang noticed a nice optimization: p = l * nr / nl, nl = l/g -> p = g * nr which eliminates a do_div() from __sched_period(). Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Dmitry Adamushko 提交于
No need to do a check for 'affine wakeup and passive balancing possibilities' in select_task_rq_fair() when task_cpu(p) == this_cpu. I guess, this part got missed upon introduction of per-sched_class select_task_rq() in try_to_wake_up(). Signed-off-by: NDmitry Adamushko <dmitry.adamushko@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Gregory Haskins 提交于
The current wake-up code path tries to determine if it can optimize the wake-up to "this_cpu" by computing load calculations. The problem is that these calculations are only relevant to SCHED_OTHER tasks where load is king. For RT tasks, priority is king. So the load calculation is completely wasted bandwidth. Therefore, we create a new sched_class interface to help with pre-wakeup routing decisions and move the load calculation as a function of CFS task's class. Signed-off-by: NGregory Haskins <ghaskins@novell.com> Signed-off-by: NSteven Rostedt <srostedt@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
The current load balancing scheme isn't good enough for precise group fairness. For example: on a 8-cpu system, I created 3 groups as under: a = 8 tasks (cpu.shares = 1024) b = 4 tasks (cpu.shares = 1024) c = 3 tasks (cpu.shares = 1024) a, b and c are task groups that have equal weight. We would expect each of the groups to receive 33.33% of cpu bandwidth under a fair scheduler. This is what I get with the latest scheduler git tree: Signed-off-by: NIngo Molnar <mingo@elte.hu> -------------------------------------------------------------------------------- Col1 | Col2 | Col3 | Col4 ------|---------|-------|------------------------------------------------------- a | 277.676 | 57.8% | 54.1% 54.1% 54.1% 54.2% 56.7% 62.2% 62.8% 64.5% b | 116.108 | 24.2% | 47.4% 48.1% 48.7% 49.3% c | 86.326 | 18.0% | 47.5% 47.9% 48.5% -------------------------------------------------------------------------------- Explanation of o/p: Col1 -> Group name Col2 -> Cumulative execution time (in seconds) received by all tasks of that group in a 60sec window across 8 cpus Col3 -> CPU bandwidth received by the group in the 60sec window, expressed in percentage. Col3 data is derived as: Col3 = 100 * Col2 / (NR_CPUS * 60) Col4 -> CPU bandwidth received by each individual task of the group. Col4 = 100 * cpu_time_recd_by_task / 60 [I can share the test case that produces a similar o/p if reqd] The deviation from desired group fairness is as below: a = +24.47% b = -9.13% c = -15.33% which is quite high. After the patch below is applied, here are the results: -------------------------------------------------------------------------------- Col1 | Col2 | Col3 | Col4 ------|---------|-------|------------------------------------------------------- a | 163.112 | 34.0% | 33.2% 33.4% 33.5% 33.5% 33.7% 34.4% 34.8% 35.3% b | 156.220 | 32.5% | 63.3% 64.5% 66.1% 66.5% c | 160.653 | 33.5% | 85.8% 90.6% 91.4% -------------------------------------------------------------------------------- Deviation from desired group fairness is as below: a = +0.67% b = -0.83% c = +0.17% which is far better IMO. Most of other runs have yielded a deviation within +-2% at the most, which is good. Why do we see bad (group) fairness with current scheuler? ========================================================= Currently cpu's weight is just the summation of individual task weights. This can yield incorrect results. For ex: consider three groups as below on a 2-cpu system: CPU0 CPU1 --------------------------- A (10) B(5) C(5) --------------------------- Group A has 10 tasks, all on CPU0, Group B and C have 5 tasks each all of which are on CPU1. Each task has the same weight (NICE_0_LOAD = 1024). The current scheme would yield a cpu weight of 10240 (10*1024) for each cpu and the load balancer will think both CPUs are perfectly balanced and won't move around any tasks. This, however, would yield this bandwidth: A = 50% B = 25% C = 25% which is not the desired result. What's changing in the patch? ============================= - How cpu weights are calculated when CONFIF_FAIR_GROUP_SCHED is defined (see below) - API Change - Two tunables introduced in sysfs (under SCHED_DEBUG) to control the frequency at which the load balance monitor thread runs. The basic change made in this patch is how cpu weight (rq->load.weight) is calculated. Its now calculated as the summation of group weights on a cpu, rather than summation of task weights. Weight exerted by a group on a cpu is dependent on the shares allocated to it and also the number of tasks the group has on that cpu compared to the total number of (runnable) tasks the group has in the system. Let, W(K,i) = Weight of group K on cpu i T(K,i) = Task load present in group K's cfs_rq on cpu i T(K) = Total task load of group K across various cpus S(K) = Shares allocated to group K NRCPUS = Number of online cpus in the scheduler domain to which group K is assigned. Then, W(K,i) = S(K) * NRCPUS * T(K,i) / T(K) A load balance monitor thread is created at bootup, which periodically runs and adjusts group's weight on each cpu. To avoid its overhead, two min/max tunables are introduced (under SCHED_DEBUG) to control the rate at which it runs. Fixes from: Peter Zijlstra <a.p.zijlstra@chello.nl> - don't start the load_balance_monitor when there is only a single cpu. - rename the kthread because its currently longer than TASK_COMM_LEN Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
This patch changes how the cpu load exerted by fair_sched_class tasks is calculated. Load exerted by fair_sched_class tasks on a cpu is now a summation of the group weights, rather than summation of task weights. Weight exerted by a group on a cpu is dependent on the shares allocated to it. This version of patch has a minor impact on code size, but should have no runtime/functional impact for !CONFIG_FAIR_GROUP_SCHED. Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
Minor bug fixes for the group scheduler: - Use a mutex to serialize add/remove of task groups and also when changing shares of a task group. Use the same mutex when printing cfs_rq debugging stats for various task groups. - Use list_for_each_entry_rcu in for_each_leaf_cfs_rq macro (when walking task group list) Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 12月, 2007 1 次提交
-
-
由 Ingo Molnar 提交于
measurements by Yanmin Zhang have shown that SCHED_BATCH tasks benefit if they run the same place_entity() logic as SCHED_OTHER tasks - so uniformize behavior in this area. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-