1. 17 12月, 2014 3 次提交
    • P
      KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register · 4a157d61
      Paul Mackerras 提交于
      There are two ways in which a guest instruction can be obtained from
      the guest in the guest exit code in book3s_hv_rmhandlers.S.  If the
      exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal
      instruction), the offending instruction is in the HEIR register
      (Hypervisor Emulation Instruction Register).  If the exit was caused
      by a load or store to an emulated MMIO device, we load the instruction
      from the guest by turning data relocation on and loading the instruction
      with an lwz instruction.
      
      Unfortunately, in the case where the guest has opposite endianness to
      the host, these two methods give results of different endianness, but
      both get put into vcpu->arch.last_inst.  The HEIR value has been loaded
      using guest endianness, whereas the lwz will load the instruction using
      host endianness.  The rest of the code that uses vcpu->arch.last_inst
      assumes it was loaded using host endianness.
      
      To fix this, we define a new vcpu field to store the HEIR value.  Then,
      in kvmppc_handle_exit_hv(), we transfer the value from this new field to
      vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness
      differ.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      4a157d61
    • P
      KVM: PPC: Book3S HV: Remove code for PPC970 processors · c17b98cf
      Paul Mackerras 提交于
      This removes the code that was added to enable HV KVM to work
      on PPC970 processors.  The PPC970 is an old CPU that doesn't
      support virtualizing guest memory.  Removing PPC970 support also
      lets us remove the code for allocating and managing contiguous
      real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
      case, the code for pinning pages of guest memory when first
      accessed and keeping track of which pages have been pinned, and
      the code for handling H_ENTER hypercalls in virtual mode.
      
      Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
      The KVM_CAP_PPC_RMA capability now always returns 0.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      c17b98cf
    • P
      KVM: PPC: Book3S HV: Simplify locking around stolen time calculations · 2711e248
      Paul Mackerras 提交于
      Currently the calculations of stolen time for PPC Book3S HV guests
      uses fields in both the vcpu struct and the kvmppc_vcore struct.  The
      fields in the kvmppc_vcore struct are protected by the
      vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for
      running the virtual core.  This works correctly but confuses lockdep,
      because it sees that the code takes the tbacct_lock for a vcpu in
      kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in
      vcore_stolen_time(), and it thinks there is a possibility of deadlock,
      causing it to print reports like this:
      
      =============================================
      [ INFO: possible recursive locking detected ]
      3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted
      ---------------------------------------------
      qemu-system-ppc/6188 is trying to acquire lock:
       (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
      
      but task is already holding lock:
       (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
      
      other info that might help us debug this:
       Possible unsafe locking scenario:
      
             CPU0
             ----
        lock(&(&vcpu->arch.tbacct_lock)->rlock);
        lock(&(&vcpu->arch.tbacct_lock)->rlock);
      
       *** DEADLOCK ***
      
       May be due to missing lock nesting notation
      
      3 locks held by qemu-system-ppc/6188:
       #0:  (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm]
       #1:  (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv]
       #2:  (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
      
      stack backtrace:
      CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89
      Call Trace:
      [c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable)
      [c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190
      [c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0
      [c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70
      [c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
      [c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv]
      [c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv]
      [c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm]
      [c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm]
      [c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm]
      [c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770
      [c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0
      [c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98
      
      In order to make the locking easier to analyse, we change the code to
      use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and
      preempt_tb fields.  This lock needs to be an irq-safe lock since it is
      used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv()
      functions, which are called with the scheduler rq lock held, which is
      an irq-safe lock.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      2711e248
  2. 24 9月, 2014 2 次提交
    • T
      kvm: Add arch specific mmu notifier for page invalidation · fe71557a
      Tang Chen 提交于
      This will be used to let the guest run while the APIC access page is
      not pinned.  Because subsequent patches will fill in the function
      for x86, place the (still empty) x86 implementation in the x86.c file
      instead of adding an inline function in kvm_host.h.
      Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      fe71557a
    • A
      kvm: Fix page ageing bugs · 57128468
      Andres Lagar-Cavilla 提交于
      1. We were calling clear_flush_young_notify in unmap_one, but we are
      within an mmu notifier invalidate range scope. The spte exists no more
      (due to range_start) and the accessed bit info has already been
      propagated (due to kvm_pfn_set_accessed). Simply call
      clear_flush_young.
      
      2. We clear_flush_young on a primary MMU PMD, but this may be mapped
      as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
      This required expanding the interface of the clear_flush_young mmu
      notifier, so a lot of code has been trivially touched.
      
      3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
      the access bit by blowing the spte. This requires proper synchronizing
      with MMU notifier consumers, like every other removal of spte's does.
      Signed-off-by: NAndres Lagar-Cavilla <andreslc@google.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      57128468
  3. 22 9月, 2014 3 次提交
  4. 29 8月, 2014 3 次提交
  5. 29 7月, 2014 1 次提交
  6. 28 7月, 2014 9 次提交
    • A
      KVM: PPC: Move kvmppc_ld/st to common code · 35c4a733
      Alexander Graf 提交于
      We have enough common infrastructure now to resolve GVA->GPA mappings at
      runtime. With this we can move our book3s specific helpers to load / store
      in guest virtual address space to common code as well.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      35c4a733
    • S
      Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8 · 9678cdaa
      Stewart Smith 提交于
      The POWER8 processor has a Micro Partition Prefetch Engine, which is
      a fancy way of saying "has way to store and load contents of L2 or
      L2+MRU way of L3 cache". We initiate the storing of the log (list of
      addresses) using the logmpp instruction and start restore by writing
      to a SPR.
      
      The logmpp instruction takes parameters in a single 64bit register:
      - starting address of the table to store log of L2/L2+L3 cache contents
        - 32kb for L2
        - 128kb for L2+L3
        - Aligned relative to maximum size of the table (32kb or 128kb)
      - Log control (no-op, L2 only, L2 and L3, abort logout)
      
      We should abort any ongoing logging before initiating one.
      
      To initiate restore, we write to the MPPR SPR. The format of what to write
      to the SPR is similar to the logmpp instruction parameter:
      - starting address of the table to read from (same alignment requirements)
      - table size (no data, until end of table)
      - prefetch rate (from fastest possible to slower. about every 8, 16, 24 or
        32 cycles)
      
      The idea behind loading and storing the contents of L2/L3 cache is to
      reduce memory latency in a system that is frequently swapping vcores on
      a physical CPU.
      
      The best case scenario for doing this is when some vcores are doing very
      cache heavy workloads. The worst case is when they have about 0 cache hits,
      so we just generate needless memory operations.
      
      This implementation just does L2 store/load. In my benchmarks this proves
      to be useful.
      
      Benchmark 1:
       - 16 core POWER8
       - 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each
       - No split core/SMT
       - two guests running sysbench memory test.
         sysbench --test=memory --num-threads=8 run
       - one guest running apache bench (of default HTML page)
         ab -n 490000 -c 400 http://localhost/
      
      This benchmark aims to measure performance of real world application (apache)
      where other guests are cache hot with their own workloads. The sysbench memory
      benchmark does pointer sized writes to a (small) memory buffer in a loop.
      
      In this benchmark with this patch I can see an improvement both in requests
      per second (~5%) and in mean and median response times (again, about 5%).
      The spread of minimum and maximum response times were largely unchanged.
      
      benchmark 2:
       - Same VM config as benchmark 1
       - all three guests running sysbench memory benchmark
      
      This benchmark aims to see if there is a positive or negative affect to this
      cache heavy benchmark. Although due to the nature of the benchmark (stores) we
      may not see a difference in performance, but rather hopefully an improvement
      in consistency of performance (when vcore switched in, don't have to wait
      many times for cachelines to be pulled in)
      
      The results of this benchmark are improvements in consistency of performance
      rather than performance itself. With this patch, the few outliers in duration
      go away and we get more consistent performance in each guest.
      
      benchmark 3:
       - same 3 guests and CPU configuration as benchmark 1 and 2.
       - two idle guests
       - 1 guest running STREAM benchmark
      
      This scenario also saw performance improvement with this patch. On Copy and
      Scale workloads from STREAM, I got 5-6% improvement with this patch. For
      Add and triad, it was around 10% (or more).
      
      benchmark 4:
       - same 3 guests as previous benchmarks
       - two guests running sysbench --memory, distinctly different cache heavy
         workload
       - one guest running STREAM benchmark.
      
      Similar improvements to benchmark 3.
      
      benchmark 5:
       - 1 guest, 8 VCPUs, Ubuntu 14.04
       - Host configured with split core (SMT8, subcores-per-core=4)
       - STREAM benchmark
      
      In this benchmark, we see a 10-20% performance improvement across the board
      of STREAM benchmark results with this patch.
      
      Based on preliminary investigation and microbenchmarks
      by Prerna Saxena <prerna@linux.vnet.ibm.com>
      Signed-off-by: NStewart Smith <stewart@linux.vnet.ibm.com>
      Acked-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      9678cdaa
    • A
      KVM: PPC: Remove 440 support · b2677b8d
      Alexander Graf 提交于
      The 440 target hasn't been properly functioning for a few releases and
      before I was the only one who fixes a very serious bug that indicates to
      me that nobody used it before either.
      
      Furthermore KVM on 440 is slow to the extent of unusable.
      
      We don't have to carry along completely unused code. Remove 440 and give
      us one less thing to worry about.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      b2677b8d
    • B
      kvm: ppc: bookehv: Save restore SPRN_SPRG9 on guest entry exit · 99e99d19
      Bharat Bhushan 提交于
      SPRN_SPRG is used by debug interrupt handler, so this is required for
      debug support.
      Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      99e99d19
    • A
      KVM: PPC: Book3S: Move vcore definition to end of kvm_arch struct · 1287cb3f
      Alexander Graf 提交于
      When building KVM with a lot of vcores (NR_CPUS is big), we can potentially
      get out of the ld immediate range for dereferences inside that struct.
      
      Move the array to the end of our kvm_arch struct. This fixes compilation
      issues with NR_CPUS=2048 for me.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      1287cb3f
    • M
      KVM: PPC: e500: Emulate power management control SPR · debf27d6
      Mihai Caraman 提交于
      For FSL e6500 core the kernel uses power management SPR register (PWRMGTCR0)
      to enable idle power down for cores and devices by setting up the idle count
      period at boot time. With the host already controlling the power management
      configuration the guest could simply benefit from it, so emulate guest request
      as a general store.
      Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      debf27d6
    • P
      KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling · 699a0ea0
      Paul Mackerras 提交于
      This provides a way for userspace controls which sPAPR hcalls get
      handled in the kernel.  Each hcall can be individually enabled or
      disabled for in-kernel handling, except for H_RTAS.  The exception
      for H_RTAS is because userspace can already control whether
      individual RTAS functions are handled in-kernel or not via the
      KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
      H_RTAS is out of the normal sequence of hcall numbers.
      
      Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
      KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
      The args field of the struct kvm_enable_cap specifies the hcall number
      in args[0] and the enable/disable flag in args[1]; 0 means disable
      in-kernel handling (so that the hcall will always cause an exit to
      userspace) and 1 means enable.  Enabling or disabling in-kernel
      handling of an hcall is effective across the whole VM.
      
      The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
      on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
      capability advertises that this ability exists.
      
      When a VM is created, an initial set of hcalls are enabled for
      in-kernel handling.  The set that is enabled is the set that have
      an in-kernel implementation at this point.  Any new hcall
      implementations from this point onwards should not be added to the
      default set without a good reason.
      
      No distinction is made between real-mode and virtual-mode hcall
      implementations; the one setting controls them both.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      699a0ea0
    • A
      KVM: PPC: BOOK3S: PR: Emulate instruction counter · 06da28e7
      Aneesh Kumar K.V 提交于
      Writing to IC is not allowed in the privileged mode.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      06da28e7
    • A
      KVM: PPC: BOOK3S: PR: Emulate virtual timebase register · 8f42ab27
      Aneesh Kumar K.V 提交于
      virtual time base register is a per VM, per cpu register that needs
      to be saved and restored on vm exit and entry. Writing to VTB is not
      allowed in the privileged mode.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      [agraf: fix compile error]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      8f42ab27
  7. 06 7月, 2014 1 次提交
  8. 30 5月, 2014 5 次提交
    • A
      KVM: PPC: Disable NX for old magic page using guests · f3383cf8
      Alexander Graf 提交于
      Old guests try to use the magic page, but map their trampoline code inside
      of an NX region.
      
      Since we can't fix those old kernels, try to detect whether the guest is sane
      or not. If not, just disable NX functionality in KVM so that old guests at
      least work at all. For newer guests, add a bit that we can set to keep NX
      functionality available.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      f3383cf8
    • A
      KVM: PPC: Book3S PR: Expose TAR facility to guest · e14e7a1e
      Alexander Graf 提交于
      POWER8 implements a new register called TAR. This register has to be
      enabled in FSCR and then from KVM's point of view is mere storage.
      
      This patch enables the guest to use TAR.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      e14e7a1e
    • A
      KVM: PPC: Book3S PR: Handle Facility interrupt and FSCR · 616dff86
      Alexander Graf 提交于
      POWER8 introduced a new interrupt type called "Facility unavailable interrupt"
      which contains its status message in a new register called FSCR.
      
      Handle these exits and try to emulate instructions for unhandled facilities.
      Follow-on patches enable KVM to expose specific facilities into the guest.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      616dff86
    • A
      KVM: PPC: Make shared struct aka magic page guest endian · 5deb8e7a
      Alexander Graf 提交于
      The shared (magic) page is a data structure that contains often used
      supervisor privileged SPRs accessible via memory to the user to reduce
      the number of exits we have to take to read/write them.
      
      When we actually share this structure with the guest we have to maintain
      it in guest endianness, because some of the patch tricks only work with
      native endian load/store operations.
      
      Since we only share the structure with either host or guest in little
      endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.
      
      For booke, the shared struct stays big endian. For book3s_64 hv we maintain
      the struct in host native endian, since it never gets shared with the guest.
      
      For book3s_64 pr we introduce a variable that tells us which endianness the
      shared struct is in and route every access to it through helper inline
      functions that evaluate this variable.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      5deb8e7a
    • A
      KVM: PPC: BOOK3S: PR: Enable Little Endian PR guest · e5ee5422
      Aneesh Kumar K.V 提交于
      This patch make sure we inherit the LE bit correctly in different case
      so that we can run Little Endian distro in PR mode
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      e5ee5422
  9. 27 1月, 2014 5 次提交
    • M
      KVM: PPC: Book3S HV: Add new state for transactional memory · 7b490411
      Michael Neuling 提交于
      Add new state for transactional memory (TM) to kvm_vcpu_arch.  Also add
      asm-offset bits that are going to be required.
      
      This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a
      CONFIG_PPC_TRANSACTIONAL_MEM section.  This requires some code changes to
      ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N.  Much of the added
      the added #ifdefs are removed in a later patch when the bulk of the TM code is
      added.
      Signed-off-by: NMichael Neuling <mikey@neuling.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix merge conflict]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      7b490411
    • A
      KVM: PPC: Book3S HV: Basic little-endian guest support · d682916a
      Anton Blanchard 提交于
      We create a guest MSR from scratch when delivering exceptions in
      a few places.  Instead of extracting LPCR[ILE] and inserting it
      into MSR_LE each time, we simply create a new variable intr_msr which
      contains the entire MSR to use.  For a little-endian guest, userspace
      needs to set the ILE (interrupt little-endian) bit in the LPCR for
      each vcpu (or at least one vcpu in each virtual core).
      
      [paulus@samba.org - removed H_SET_MODE implementation from original
      version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.]
      Signed-off-by: NAnton Blanchard <anton@samba.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      d682916a
    • P
      KVM: PPC: Book3S HV: Add support for DABRX register on POWER7 · 8563bf52
      Paul Mackerras 提交于
      The DABRX (DABR extension) register on POWER7 processors provides finer
      control over which accesses cause a data breakpoint interrupt.  It
      contains 3 bits which indicate whether to enable accesses in user,
      kernel and hypervisor modes respectively to cause data breakpoint
      interrupts, plus one bit that enables both real mode and virtual mode
      accesses to cause interrupts.  Currently, KVM sets DABRX to allow
      both kernel and user accesses to cause interrupts while in the guest.
      
      This adds support for the guest to specify other values for DABRX.
      PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
      and DABRX with one call.  This adds a real-mode implementation of
      H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
      implementation.  To support this, we add a per-vcpu field to store the
      DABRX value plus code to get and set it via the ONE_REG interface.
      
      For Linux guests to use this new hcall, userspace needs to add
      "hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
      property in the device tree.  If userspace does this and then migrates
      the guest to a host where the kernel doesn't include this patch, then
      userspace will need to implement H_SET_XDABR by writing the specified
      DABR value to the DABR using the ONE_REG interface.  In that case, the
      old kernel will set DABRX to DABRX_USER | DABRX_KERNEL.  That should
      still work correctly, at least for Linux guests, since Linux guests
      cope with getting data breakpoint interrupts in modes that weren't
      requested by just ignoring the interrupt, and Linux guests never set
      DABRX_BTI.
      
      The other thing this does is to make H_SET_DABR and H_SET_XDABR work
      on POWER8, which has the DAWR and DAWRX instead of DABR/X.  Guests that
      know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
      guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
      For them, this adds the logic to convert DABR/X values into DAWR/X values
      on POWER8.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      8563bf52
    • M
      KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs · b005255e
      Michael Neuling 提交于
      This adds fields to the struct kvm_vcpu_arch to store the new
      guest-accessible SPRs on POWER8, adds code to the get/set_one_reg
      functions to allow userspace to access this state, and adds code to
      the guest entry and exit to context-switch these SPRs between host
      and guest.
      
      Note that DPDES (Directed Privileged Doorbell Exception State) is
      shared between threads on a core; hence we store it in struct
      kvmppc_vcore and have the master thread save and restore it.
      Signed-off-by: NMichael Neuling <mikey@neuling.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      b005255e
    • P
      KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers · e0b7ec05
      Paul Mackerras 提交于
      On a threaded processor such as POWER7, we group VCPUs into virtual
      cores and arrange that the VCPUs in a virtual core run on the same
      physical core.  Currently we don't enforce any correspondence between
      virtual thread numbers within a virtual core and physical thread
      numbers.  Physical threads are allocated starting at 0 on a first-come
      first-served basis to runnable virtual threads (VCPUs).
      
      POWER8 implements a new "msgsndp" instruction which guest kernels can
      use to interrupt other threads in the same core or sub-core.  Since
      the instruction takes the destination physical thread ID as a parameter,
      it becomes necessary to align the physical thread IDs with the virtual
      thread IDs, that is, to make sure virtual thread N within a virtual
      core always runs on physical thread N.
      
      This means that it's possible that thread 0, which is where we call
      __kvmppc_vcore_entry, may end up running some other vcpu than the
      one whose task called kvmppc_run_core(), or it may end up running
      no vcpu at all, if for example thread 0 of the virtual core is
      currently executing in userspace.  However, we do need thread 0
      to be responsible for switching the MMU -- a previous version of
      this patch that had other threads switching the MMU was found to
      be responsible for occasional memory corruption and machine check
      interrupts in the guest on POWER7 machines.
      
      To accommodate this, we no longer pass the vcpu pointer to
      __kvmppc_vcore_entry, but instead let the assembly code load it from
      the PACA.  Since the assembly code will need to know the kvm pointer
      and the thread ID for threads which don't have a vcpu, we move the
      thread ID into the PACA and we add a kvm pointer to the virtual core
      structure.
      
      In the case where thread 0 has no vcpu to run, it still calls into
      kvmppc_hv_entry in order to do the MMU switch, and then naps until
      either its vcpu is ready to run in the guest, or some other thread
      needs to exit the guest.  In the latter case, thread 0 jumps to the
      code that switches the MMU back to the host.  This control flow means
      that now we switch the MMU before loading any guest vcpu state.
      Similarly, on guest exit we now save all the guest vcpu state before
      switching the MMU back to the host.  This has required substantial
      code movement, making the diff rather large.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      e0b7ec05
  10. 09 1月, 2014 2 次提交
  11. 18 10月, 2013 1 次提交
  12. 17 10月, 2013 5 次提交
    • A
      kvm: powerpc: book3s: Add a new config variable CONFIG_KVM_BOOK3S_HV_POSSIBLE · 9975f5e3
      Aneesh Kumar K.V 提交于
      This help ups to select the relevant code in the kernel code
      when we later move HV and PR bits as seperate modules. The patch
      also makes the config options for PR KVM selectable
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      9975f5e3
    • A
      kvm: powerpc: book3s: pr: Rename KVM_BOOK3S_PR to KVM_BOOK3S_PR_POSSIBLE · 7aa79938
      Aneesh Kumar K.V 提交于
      With later patches supporting PR kvm as a kernel module, the changes
      that has to be built into the main kernel binary to enable PR KVM module
      is now selected via KVM_BOOK3S_PR_POSSIBLE
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      7aa79938
    • B
      KVM: PPC: E500: Add userspace debug stub support · ce11e48b
      Bharat Bhushan 提交于
      This patch adds the debug stub support on booke/bookehv.
      Now QEMU debug stub can use hw breakpoint, watchpoint and
      software breakpoint to debug guest.
      
      This is how we save/restore debug register context when switching
      between guest, userspace and kernel user-process:
      
      When QEMU is running
       -> thread->debug_reg == QEMU debug register context.
       -> Kernel will handle switching the debug register on context switch.
       -> no vcpu_load() called
      
      QEMU makes ioctls (except RUN)
       -> This will call vcpu_load()
       -> should not change context.
       -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs
      
      QEMU Makes RUN ioctl
       -> Save thread->debug_reg on STACK
       -> Store thread->debug_reg == vcpu->debug_reg
       -> load thread->debug_reg
       -> RUN VCPU ( So thread points to vcpu context )
      
      Context switch happens When VCPU running
       -> makes vcpu_load() should not load any context
       -> kernel loads the vcpu context as thread->debug_regs points to vcpu context.
      
      On heavyweight_exit
       -> Load the context saved on stack in thread->debug_reg
      
      Currently we do not support debug resource emulation to guest,
      On debug exception, always exit to user space irrespective of
      user space is expecting the debug exception or not. If this is
      unexpected exception (breakpoint/watchpoint event not set by
      userspace) then let us leave the action on user space. This
      is similar to what it was before, only thing is that now we
      have proper exit state available to user space.
      Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      ce11e48b
    • B
      KVM: PPC: E500: Using "struct debug_reg" · 547465ef
      Bharat Bhushan 提交于
      For KVM also use the "struct debug_reg" defined in asm/processor.h
      Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      547465ef
    • P
      KVM: PPC: Book3S PR: Better handling of host-side read-only pages · 93b159b4
      Paul Mackerras 提交于
      Currently we request write access to all pages that get mapped into the
      guest, even if the guest is only loading from the page.  This reduces
      the effectiveness of KSM because it means that we unshare every page we
      access.  Also, we always set the changed (C) bit in the guest HPTE if
      it allows writing, even for a guest load.
      
      This fixes both these problems.  We pass an 'iswrite' flag to the
      mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
      the access is a load or a store.  The mmu.xlate() functions now only
      set C for stores.  kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
      instead of gfn_to_pfn() so that it can indicate whether we need write
      access to the page, and get back a 'writable' flag to indicate whether
      the page is writable or not.  If that 'writable' flag is clear, we then
      make the host HPTE read-only even if the guest HPTE allowed writing.
      
      This means that we can get a protection fault when the guest writes to a
      page that it has mapped read-write but which is read-only on the host
      side (perhaps due to KSM having merged the page).  Thus we now call
      kvmppc_handle_pagefault() for protection faults as well as HPTE not found
      faults.  In kvmppc_handle_pagefault(), if the access was allowed by the
      guest HPTE and we thus need to install a new host HPTE, we then need to
      remove the old host HPTE if there is one.  This is done with a new
      function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
      find and remove the old host HPTE.
      
      Since the memslot-related functions require the KVM SRCU read lock to
      be held, this adds srcu_read_lock/unlock pairs around the calls to
      kvmppc_handle_pagefault().
      
      Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
      guest HPTEs that don't permit access, and to return -EPERM for accesses
      that are not permitted by the page protections.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      93b159b4