- 07 9月, 2017 1 次提交
-
-
由 Daniel Colascione 提交于
/proc/pid/smaps_rollup is a new proc file that improves the performance of user programs that determine aggregate memory statistics (e.g., total PSS) of a process. Android regularly "samples" the memory usage of various processes in order to balance its memory pool sizes. This sampling process involves opening /proc/pid/smaps and summing certain fields. For very large processes, sampling memory use this way can take several hundred milliseconds, due mostly to the overhead of the seq_printf calls in task_mmu.c. smaps_rollup improves the situation. It contains most of the fields of /proc/pid/smaps, but instead of a set of fields for each VMA, smaps_rollup instead contains one synthetic smaps-format entry representing the whole process. In the single smaps_rollup synthetic entry, each field is the summation of the corresponding field in all of the real-smaps VMAs. Using a common format for smaps_rollup and smaps allows userspace parsers to repurpose parsers meant for use with non-rollup smaps for smaps_rollup, and it allows userspace to switch between smaps_rollup and smaps at runtime (say, based on the availability of smaps_rollup in a given kernel) with minimal fuss. By using smaps_rollup instead of smaps, a caller can avoid the significant overhead of formatting, reading, and parsing each of a large process's potentially very numerous memory mappings. For sampling system_server's PSS in Android, we measured a 12x speedup, representing a savings of several hundred milliseconds. One alternative to a new per-process proc file would have been including PSS information in /proc/pid/status. We considered this option but thought that PSS would be too expensive (by a few orders of magnitude) to collect relative to what's already emitted as part of /proc/pid/status, and slowing every user of /proc/pid/status for the sake of readers that happen to want PSS feels wrong. The code itself works by reusing the existing VMA-walking framework we use for regular smaps generation and keeping the mem_size_stats structure around between VMA walks instead of using a fresh one for each VMA. In this way, summation happens automatically. We let seq_file walk over the VMAs just as it does for regular smaps and just emit nothing to the seq_file until we hit the last VMA. Benchmarks: using smaps: iterations:1000 pid:1163 pss:220023808 0m29.46s real 0m08.28s user 0m20.98s system using smaps_rollup: iterations:1000 pid:1163 pss:220702720 0m04.39s real 0m00.03s user 0m04.31s system We're using the PSS samples we collect asynchronously for system-management tasks like fine-tuning oom_adj_score, memory use tracking for debugging, application-level memory-use attribution, and deciding whether we want to kill large processes during system idle maintenance windows. Android has been using PSS for these purposes for a long time; as the average process VMA count has increased and and devices become more efficiency-conscious, PSS-collection inefficiency has started to matter more. IMHO, it'd be a lot safer to optimize the existing PSS-collection model, which has been fine-tuned over the years, instead of changing the memory tracking approach entirely to work around smaps-generation inefficiency. Tim said: : There are two main reasons why Android gathers PSS information: : : 1. Android devices can show the user the amount of memory used per : application via the settings app. This is a less important use case. : : 2. We log PSS to help identify leaks in applications. We have found : an enormous number of bugs (in the Android platform, in Google's own : apps, and in third-party applications) using this data. : : To do this, system_server (the main process in Android userspace) will : sample the PSS of a process three seconds after it changes state (for : example, app is launched and becomes the foreground application) and about : every ten minutes after that. The net result is that PSS collection is : regularly running on at least one process in the system (usually a few : times a minute while the screen is on, less when screen is off due to : suspend). PSS of a process is an incredibly useful stat to track, and we : aren't going to get rid of it. We've looked at some very hacky approaches : using RSS ("take the RSS of the target process, subtract the RSS of the : zygote process that is the parent of all Android apps") to reduce the : accounting time, but it regularly overestimated the memory used by 20+ : percent. Accordingly, I don't think that there's a good alternative to : using PSS. : : We started looking into PSS collection performance after we noticed random : frequency spikes while a phone's screen was off; occasionally, one of the : CPU clusters would ramp to a high frequency because there was 200-300ms of : constant CPU work from a single thread in the main Android userspace : process. The work causing the spike (which is reasonable governor : behavior given the amount of CPU time needed) was always PSS collection. : As a result, Android is burning more power than we should be on PSS : collection. : : The other issue (and why I'm less sure about improving smaps as a : long-term solution) is that the number of VMAs per process has increased : significantly from release to release. After trying to figure out why we : were seeing these 200-300ms PSS collection times on Android O but had not : noticed it in previous versions, we found that the number of VMAs in the : main system process increased by 50% from Android N to Android O (from : ~1800 to ~2700) and varying increases in every userspace process. Android : M to N also had an increase in the number of VMAs, although not as much. : I'm not sure why this is increasing so much over time, but thinking about : ASLR and ways to make ASLR better, I expect that this will continue to : increase going forward. I would not be surprised if we hit 5000 VMAs on : the main Android process (system_server) by 2020. : : If we assume that the number of VMAs is going to increase over time, then : doing anything we can do to reduce the overhead of each VMA during PSS : collection seems like the right way to go, and that means outputting an : aggregate statistic (to avoid whatever overhead there is per line in : writing smaps and in reading each line from userspace). Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.comSigned-off-by: NDaniel Colascione <dancol@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sonny Rao <sonnyrao@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 8月, 2017 1 次提交
-
-
由 Minchan Kim 提交于
Nadav reported KSM can corrupt the user data by the TLB batching race[1]. That means data user written can be lost. Quote from Nadav Amit: "For this race we need 4 CPUs: CPU0: Caches a writable and dirty PTE entry, and uses the stale value for write later. CPU1: Runs madvise_free on the range that includes the PTE. It would clear the dirty-bit. It batches TLB flushes. CPU2: Writes 4 to /proc/PID/clear_refs , clearing the PTEs soft-dirty. We care about the fact that it clears the PTE write-bit, and of course, batches TLB flushes. CPU3: Runs KSM. Our purpose is to pass the following test in write_protect_page(): if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) Since it will avoid TLB flush. And we want to do it while the PTE is stale. Later, and before replacing the page, we would be able to change the page. Note that all the operations the CPU1-3 perform canhappen in parallel since they only acquire mmap_sem for read. We start with two identical pages. Everything below regards the same page/PTE. CPU0 CPU1 CPU2 CPU3 ---- ---- ---- ---- Write the same value on page [cache PTE as dirty in TLB] MADV_FREE pte_mkclean() 4 > clear_refs pte_wrprotect() write_protect_page() [ success, no flush ] pages_indentical() [ ok ] Write to page different value [Ok, using stale PTE] replace_page() Later, CPU1, CPU2 and CPU3 would flush the TLB, but that is too late. CPU0 already wrote on the page, but KSM ignored this write, and it got lost" In above scenario, MADV_FREE is fixed by changing TLB batching API including [set|clear]_tlb_flush_pending. Remained thing is soft-dirty part. This patch changes soft-dirty uses TLB batching API instead of flush_tlb_mm and KSM checks pending TLB flush by using mm_tlb_flush_pending so that it will flush TLB to avoid data lost if there are other parallel threads pending TLB flush. [1] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com Link: http://lkml.kernel.org/r/20170802000818.4760-8-namit@vmware.comSigned-off-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NNadav Amit <namit@vmware.com> Reported-by: NNadav Amit <namit@vmware.com> Tested-by: NNadav Amit <namit@vmware.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 7月, 2017 1 次提交
-
-
由 Vasily Averin 提交于
After commit 1be7107f ("mm: larger stack guard gap, between vmas") we do not hide stack guard page in /proc/<pid>/maps Link: http://lkml.kernel.org/r/211f3c2a-f7ef-7c13-82bf-46fd426f6e1b@virtuozzo.comSigned-off-by: NVasily Averin <vvs@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 6月, 2017 1 次提交
-
-
由 Hugh Dickins 提交于
Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: NOleg Nesterov <oleg@redhat.com> Original-patch-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 5月, 2017 1 次提交
-
-
由 Shaohua Li 提交于
Show MADV_FREE pages info of each vma in smaps. The interface is for diganose or monitoring purpose, userspace could use it to understand what happens in the application. Since userspace could dirty MADV_FREE pages without notice from kernel, this interface is the only place we can get accurate accounting info about MADV_FREE pages. [mhocko@kernel.org: update Documentation/filesystems/proc.txt] Link: http://lkml.kernel.org/r/89efde633559de1ec07444f2ef0f4963a97a2ce8.1487965799.git.shli@fb.comSigned-off-by: NShaohua Li <shli@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMinchan Kim <minchan@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 4月, 2017 1 次提交
-
-
由 Kirill A. Shutemov 提交于
Yet another instance of the same race. Fix is identical to change_huge_pmd(). See "thp: fix MADV_DONTNEED vs. numa balancing race" for more details. Link: http://lkml.kernel.org/r/20170302151034.27829-5-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 3月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/mm.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. The APIs that are going to be moved first are: mm_alloc() __mmdrop() mmdrop() mmdrop_async_fn() mmdrop_async() mmget_not_zero() mmput() mmput_async() get_task_mm() mm_access() mm_release() Include the new header in the files that are going to need it. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 2月, 2017 1 次提交
-
-
由 Vegard Nossum 提交于
We already have the helper, we can convert the rest of the kernel mechanically using: git grep -l 'atomic_inc_not_zero.*mm_users' | xargs sed -i 's/atomic_inc_not_zero(&\(.*\)->mm_users)/mmget_not_zero\(\1\)/' This is needed for a later patch that hooks into the helper, but might be a worthwhile cleanup on its own. Link: http://lkml.kernel.org/r/20161218123229.22952-3-vegard.nossum@oracle.comSigned-off-by: NVegard Nossum <vegard.nossum@oracle.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 12月, 2016 1 次提交
-
-
由 Linus Torvalds 提交于
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 12月, 2016 1 次提交
-
-
由 Hugh Dickins 提交于
The other pagetable walks in task_mmu.c have a cond_resched() after walking their ptes: add a cond_resched() in gather_pte_stats() too, for reading /proc/<id>/numa_maps. Only pagemap_pmd_range() has a cond_resched() in its (unusually expensive) pmd_trans_huge case: more should probably be added, but leave them unchanged for now. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052157400.13021@eggly.anvilsSigned-off-by: NHugh Dickins <hughd@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 10月, 2016 1 次提交
-
-
由 Andy Lutomirski 提交于
This reverts more of: b7643757 ("procfs: mark thread stack correctly in proc/<pid>/maps") ... which was partially reverted by: 65376df5 ("proc: revert /proc/<pid>/maps [stack:TID] annotation") Originally, /proc/PID/task/TID/maps was the same as /proc/TID/maps. In current kernels, /proc/PID/maps (or /proc/TID/maps even for threads) shows "[stack]" for VMAs in the mm's stack address range. In contrast, /proc/PID/task/TID/maps uses KSTK_ESP to guess the target thread's stack's VMA. This is racy, probably returns garbage and, on arches with CONFIG_TASK_INFO_IN_THREAD=y, is also crash-prone: KSTK_ESP is not safe to use on tasks that aren't known to be running ordinary process-context kernel code. This patch removes the difference and just shows "[stack]" for VMAs in the mm's stack range. This is IMO much more sensible -- the actual "stack" address really is treated specially by the VM code, and the current thread stack isn't even well-defined for programs that frequently switch stacks on their own. Reported-by: NJann Horn <jann@thejh.net> Signed-off-by: NAndy Lutomirski <luto@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linux API <linux-api@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tycho Andersen <tycho.andersen@canonical.com> Link: http://lkml.kernel.org/r/3e678474ec14e0a0ec34c611016753eea2e1b8ba.1475257877.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 08 10月, 2016 2 次提交
-
-
由 Robert Ho 提交于
Recently, Redhat reported that nvml test suite failed on QEMU/KVM, more detailed info please refer to: https://bugzilla.redhat.com/show_bug.cgi?id=1365721 Actually, this bug is not only for NVDIMM/DAX but also for any other file systems. This simple test case abstracted from nvml can easily reproduce this bug in common environment: -------------------------- testcase.c ----------------------------- int is_pmem_proc(const void *addr, size_t len) { const char *caddr = addr; FILE *fp; if ((fp = fopen("/proc/self/smaps", "r")) == NULL) { printf("!/proc/self/smaps"); return 0; } int retval = 0; /* assume false until proven otherwise */ char line[PROCMAXLEN]; /* for fgets() */ char *lo = NULL; /* beginning of current range in smaps file */ char *hi = NULL; /* end of current range in smaps file */ int needmm = 0; /* looking for mm flag for current range */ while (fgets(line, PROCMAXLEN, fp) != NULL) { static const char vmflags[] = "VmFlags:"; static const char mm[] = " wr"; /* check for range line */ if (sscanf(line, "%p-%p", &lo, &hi) == 2) { if (needmm) { /* last range matched, but no mm flag found */ printf("never found mm flag.\n"); break; } else if (caddr < lo) { /* never found the range for caddr */ printf("#######no match for addr %p.\n", caddr); break; } else if (caddr < hi) { /* start address is in this range */ size_t rangelen = (size_t)(hi - caddr); /* remember that matching has started */ needmm = 1; /* calculate remaining range to search for */ if (len > rangelen) { len -= rangelen; caddr += rangelen; printf("matched %zu bytes in range " "%p-%p, %zu left over.\n", rangelen, lo, hi, len); } else { len = 0; printf("matched all bytes in range " "%p-%p.\n", lo, hi); } } } else if (needmm && strncmp(line, vmflags, sizeof(vmflags) - 1) == 0) { if (strstr(&line[sizeof(vmflags) - 1], mm) != NULL) { printf("mm flag found.\n"); if (len == 0) { /* entire range matched */ retval = 1; break; } needmm = 0; /* saw what was needed */ } else { /* mm flag not set for some or all of range */ printf("range has no mm flag.\n"); break; } } } fclose(fp); printf("returning %d.\n", retval); return retval; } void *Addr; size_t Size; /* * worker -- the work each thread performs */ static void * worker(void *arg) { int *ret = (int *)arg; *ret = is_pmem_proc(Addr, Size); return NULL; } int main(int argc, char *argv[]) { if (argc < 2 || argc > 3) { printf("usage: %s file [env].\n", argv[0]); return -1; } int fd = open(argv[1], O_RDWR); struct stat stbuf; fstat(fd, &stbuf); Size = stbuf.st_size; Addr = mmap(0, stbuf.st_size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); close(fd); pthread_t threads[NTHREAD]; int ret[NTHREAD]; /* kick off NTHREAD threads */ for (int i = 0; i < NTHREAD; i++) pthread_create(&threads[i], NULL, worker, &ret[i]); /* wait for all the threads to complete */ for (int i = 0; i < NTHREAD; i++) pthread_join(threads[i], NULL); /* verify that all the threads return the same value */ for (int i = 1; i < NTHREAD; i++) { if (ret[0] != ret[i]) { printf("Error i %d ret[0] = %d ret[i] = %d.\n", i, ret[0], ret[i]); } } printf("%d", ret[0]); return 0; } It failed as some threads can not find the memory region in "/proc/self/smaps" which is allocated in the main process It is caused by proc fs which uses 'file->version' to indicate the VMA that is the last one has already been handled by read() system call. When the next read() issues, it uses the 'version' to find the VMA, then the next VMA is what we want to handle, the related code is as follows: if (last_addr) { vma = find_vma(mm, last_addr); if (vma && (vma = m_next_vma(priv, vma))) return vma; } However, VMA will be lost if the last VMA is gone, e.g: The process VMA list is A->B->C->D CPU 0 CPU 1 read() system call handle VMA B version = B return to userspace unmap VMA B issue read() again to continue to get the region info find_vma(version) will get VMA C m_next_vma(C) will get VMA D handle D !!! VMA C is lost !!! In order to fix this bug, we make 'file->version' indicate the end address of the current VMA. m_start will then look up a vma which with vma_start < last_vm_end and moves on to the next vma if we found the same or an overlapping vma. This will guarantee that we will not miss an exclusive vma but we can still miss one if the previous vma was shrunk. This is acceptable because guaranteeing "never miss a vma" is simply not feasible. User has to cope with some inconsistencies if the file is not read in one go. [mhocko@suse.com: changelog fixes] Link: http://lkml.kernel.org/r/1475296958-27652-1-git-send-email-robert.hu@intel.comAcked-by: NDave Hansen <dave.hansen@intel.com> Signed-off-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: NRobert Hu <robert.hu@intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Stefan Hajnoczi <stefanha@redhat.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 James Morse 提交于
Trying to walk all of virtual memory requires architecture specific knowledge. On x86_64, addresses must be sign extended from bit 48, whereas on arm64 the top VA_BITS of address space have their own set of page tables. clear_refs_write() calls walk_page_range() on the range 0 to ~0UL, it provides a test_walk() callback that only expects to be walking over VMAs. Currently walk_pmd_range() will skip memory regions that don't have a VMA, reporting them as a hole. As this call only expects to walk user address space, make it walk 0 to 'highest_vm_end'. Link: http://lkml.kernel.org/r/1472655792-22439-1-git-send-email-james.morse@arm.comSigned-off-by: NJames Morse <james.morse@arm.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 9月, 2016 1 次提交
-
-
由 Dan Williams 提交于
Attempting to dump /proc/<pid>/smaps for a process with pmd dax mappings currently results in the following VM_BUG_ONs: kernel BUG at mm/huge_memory.c:1105! task: ffff88045f16b140 task.stack: ffff88045be14000 RIP: 0010:[<ffffffff81268f9b>] [<ffffffff81268f9b>] follow_trans_huge_pmd+0x2cb/0x340 [..] Call Trace: [<ffffffff81306030>] smaps_pte_range+0xa0/0x4b0 [<ffffffff814c2755>] ? vsnprintf+0x255/0x4c0 [<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0 [<ffffffff8123c8a2>] walk_page_vma+0x62/0x80 [<ffffffff81307656>] show_smap+0xa6/0x2b0 kernel BUG at fs/proc/task_mmu.c:585! RIP: 0010:[<ffffffff81306469>] [<ffffffff81306469>] smaps_pte_range+0x499/0x4b0 Call Trace: [<ffffffff814c2795>] ? vsnprintf+0x255/0x4c0 [<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0 [<ffffffff8123c8a2>] walk_page_vma+0x62/0x80 [<ffffffff81307696>] show_smap+0xa6/0x2b0 These locations are sanity checking page flags that must be set for an anonymous transparent huge page, but are not set for the zone_device pages associated with dax mappings. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 27 7月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 5月, 2016 1 次提交
-
-
由 Michal Hocko 提交于
CLEAR_REFS_MM_HIWATER_RSS and CLEAR_REFS_SOFT_DIRTY are relying on mmap_sem for write. If the waiting task gets killed by the oom killer and it would operate on the current's mm it would block oom_reaper from asynchronous address space reclaim and reduce the chances of timely OOM resolving. Wait for the lock in the killable mode and return with EINTR if the task got killed while waiting. This will also expedite the return to the userspace and do_exit even if the mm is remote. Signed-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Petr Cermak <petrcermak@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 4月, 2016 1 次提交
-
-
由 Gerald Schaefer 提交于
In gather_pte_stats() a THP pmd is cast into a pte, which is wrong because the layouts may differ depending on the architecture. On s390 this will lead to inaccurate numa_maps accounting in /proc because of misguided pte_present() and pte_dirty() checks on the fake pte. On other architectures pte_present() and pte_dirty() may work by chance, but there may be an issue with direct-access (dax) mappings w/o underlying struct pages when HAVE_PTE_SPECIAL is set and THP is available. In vm_normal_page() the fake pte will be checked with pte_special() and because there is no "special" bit in a pmd, this will always return false and the VM_PFNMAP | VM_MIXEDMAP checking will be skipped. On dax mappings w/o struct pages, an invalid struct page pointer would then be returned that can crash the kernel. This patch fixes the numa_maps THP handling by introducing new "_pmd" variants of the can_gather_numa_stats() and vm_normal_page() functions. Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 4月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 2月, 2016 1 次提交
-
-
由 Dave Hansen 提交于
The protection key can now be just as important as read/write permissions on a VMA. We need some debug mechanism to help figure out if it is in play. smaps seems like a logical place to expose it. arch/x86/kernel/setup.c is a bit of a weirdo place to put this code, but it already had seq_file.h and there was not a much better existing place to put it. We also use no #ifdef. If protection keys is .config'd out we will effectively get the same function as if we used the weak generic function. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joerg Roedel <jroedel@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salter <msalter@redhat.com> Cc: Mark Williamson <mwilliamson@undo-software.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210227.4F8EB3F8@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 2月, 2016 2 次提交
-
-
由 Johannes Weiner 提交于
Commit b7643757 ("procfs: mark thread stack correctly in proc/<pid>/maps") added [stack:TID] annotation to /proc/<pid>/maps. Finding the task of a stack VMA requires walking the entire thread list, turning this into quadratic behavior: a thousand threads means a thousand stacks, so the rendering of /proc/<pid>/maps needs to look at a million combinations. The cost is not in proportion to the usefulness as described in the patch. Drop the [stack:TID] annotation to make /proc/<pid>/maps (and /proc/<pid>/numa_maps) usable again for higher thread counts. The [stack] annotation inside /proc/<pid>/task/<tid>/maps is retained, as identifying the stack VMA there is an O(1) operation. Siddesh said: "The end users needed a way to identify thread stacks programmatically and there wasn't a way to do that. I'm afraid I no longer remember (or have access to the resources that would aid my memory since I changed employers) the details of their requirement. However, I did do this on my own time because I thought it was an interesting project for me and nobody really gave any feedback then as to its utility, so as far as I am concerned you could roll back the main thread maps information since the information is available in the thread-specific files" Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Siddhesh Poyarekar <siddhesh.poyarekar@gmail.com> Cc: Shaohua Li <shli@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michael Holzheu 提交于
When working with hugetlbfs ptes (which are actually pmds) is not valid to directly use pte functions like pte_present() because the hardware bit layout of pmds and ptes can be different. This is the case on s390. Therefore we have to convert the hugetlbfs ptes first into a valid pte encoding with huge_ptep_get(). Currently the /proc/<pid>/numa_maps code uses hugetlbfs ptes without huge_ptep_get(). On s390 this leads to the following two problems: 1) The pte_present() function returns false (instead of true) for PROT_NONE hugetlb ptes. Therefore PROT_NONE vmas are missing completely in the "numa_maps" output. 2) The pte_dirty() function always returns false for all hugetlb ptes. Therefore these pages are reported as "mapped=xxx" instead of "dirty=xxx". Therefore use huge_ptep_get() to correctly convert the hugetlb ptes. Signed-off-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com> Reviewed-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 1月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
After THP refcounting rework we have only two possible return values from pmd_trans_huge_lock(): success and failure. Return-by-pointer for ptl doesn't make much sense in this case. Let's convert pmd_trans_huge_lock() to return ptl on success and NULL on failure. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Minchan Kim <minchan@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 1月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
For THP=n, HPAGE_PMD_NR in smaps_account() expands to BUILD_BUG(). That's fine since this codepath is eliminated by modern compilers. But older compilers have not that efficient dead code elimination. It causes problem at least with gcc 4.1.2 on m68k: fs/built-in.o: In function `smaps_account': task_mmu.c:(.text+0x4f8fa): undefined reference to `__compiletime_assert_471' Let's replace HPAGE_PMD_NR with 1 << compound_order(page). Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: NGeert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 1月, 2016 2 次提交
-
-
由 Kirill A. Shutemov 提交于
With new refcounting we don't need to mark PMDs splitting. Let's drop code to handle this. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
The goal of this patchset is to make refcounting on THP pages cheaper with simpler semantics and allow the same THP compound page to be mapped with PMD and PTEs. This is required to get reasonable THP-pagecache implementation. With the new refcounting design it's much easier to protect against split_huge_page(): simple reference on a page will make you the deal. It makes gup_fast() implementation simpler and doesn't require special-case in futex code to handle tail THP pages. It should improve THP utilization over the system since splitting THP in one process doesn't necessary lead to splitting the page in all other processes have the page mapped. The patchset drastically lower complexity of get_page()/put_page() codepaths. I encourage people look on this code before-and-after to justify time budget on reviewing this patchset. This patch (of 37): With new refcounting all subpages of the compound page are not necessary have the same mapcount. We need to take into account mapcount of every sub-page. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NJerome Marchand <jmarchan@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 1月, 2016 7 次提交
-
-
由 Konstantin Khlebnikov 提交于
When inspecting a vague code inside prctl(PR_SET_MM_MEM) call (which testing the RLIMIT_DATA value to figure out if we're allowed to assign new @start_brk, @brk, @start_data, @end_data from mm_struct) it's been commited that RLIMIT_DATA in a form it's implemented now doesn't do anything useful because most of user-space libraries use mmap() syscall for dynamic memory allocations. Linus suggested to convert RLIMIT_DATA rlimit into something suitable for anonymous memory accounting. But in this patch we go further, and the changes are bundled together as: * keep vma counting if CONFIG_PROC_FS=n, will be used for limits * replace mm->shared_vm with better defined mm->data_vm * account anonymous executable areas as executable * account file-backed growsdown/up areas as stack * drop struct file* argument from vm_stat_account * enforce RLIMIT_DATA for size of data areas This way code looks cleaner: now code/stack/data classification depends only on vm_flags state: VM_EXEC & ~VM_WRITE -> code (VmExe + VmLib in proc) VM_GROWSUP | VM_GROWSDOWN -> stack (VmStk) VM_WRITE & ~VM_SHARED & !stack -> data (VmData) The rest (VmSize - VmData - VmStk - VmExe - VmLib) could be called "shared", but that might be strange beast like readonly-private or VM_IO area. - RLIMIT_AS limits whole address space "VmSize" - RLIMIT_STACK limits stack "VmStk" (but each vma individually) - RLIMIT_DATA now limits "VmData" Signed-off-by: NKonstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Willy Tarreau <w@1wt.eu> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Kees Cook <keescook@google.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
clear_soft_dirty_pmd() is called by clear_refs_write(CLEAR_REFS_SOFT_DIRTY), VM_SOFTDIRTY was already cleared before walk_page_range(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NCyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jerome Marchand 提交于
There are several shortcomings with the accounting of shared memory (SysV shm, shared anonymous mapping, mapping of a tmpfs file). The values in /proc/<pid>/status and <...>/statm don't allow to distinguish between shmem memory and a shared mapping to a regular file, even though theirs implication on memory usage are quite different: during reclaim, file mapping can be dropped or written back on disk, while shmem needs a place in swap. Also, to distinguish the memory occupied by anonymous and file mappings, one has to read the /proc/pid/statm file, which has a field for the file mappings (again, including shmem) and total memory occupied by these mappings (i.e. equivalent to VmRSS in the <...>/status file. Getting the value for anonymous mappings only is thus not exactly user-friendly (the statm file is intended to be rather efficiently machine-readable). To address both of these shortcomings, this patch adds a breakdown of VmRSS in /proc/<pid>/status via new fields RssAnon, RssFile and RssShmem, making use of the previous preparatory patch. These fields tell the user the memory occupied by private anonymous pages, mapped regular files and shmem, respectively. Other existing fields in /status and /statm files are left without change. The /statm file can be extended in the future, if there's a need for that. Example (part of) /proc/pid/status output including the new Rss* fields: VmPeak: 2001008 kB VmSize: 2001004 kB VmLck: 0 kB VmPin: 0 kB VmHWM: 5108 kB VmRSS: 5108 kB RssAnon: 92 kB RssFile: 1324 kB RssShmem: 3692 kB VmData: 192 kB VmStk: 136 kB VmExe: 4 kB VmLib: 1784 kB VmPTE: 3928 kB VmPMD: 20 kB VmSwap: 0 kB HugetlbPages: 0 kB [vbabka@suse.cz: forward-porting, tweak changelog] Signed-off-by: NJerome Marchand <jmarchan@redhat.com> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jerome Marchand 提交于
Currently looking at /proc/<pid>/status or statm, there is no way to distinguish shmem pages from pages mapped to a regular file (shmem pages are mapped to /dev/zero), even though their implication in actual memory use is quite different. The internal accounting currently counts shmem pages together with regular files. As a preparation to extend the userspace interfaces, this patch adds MM_SHMEMPAGES counter to mm_rss_stat to account for shmem pages separately from MM_FILEPAGES. The next patch will expose it to userspace - this patch doesn't change the exported values yet, by adding up MM_SHMEMPAGES to MM_FILEPAGES at places where MM_FILEPAGES was used before. The only user-visible change after this patch is the OOM killer message that separates the reported "shmem-rss" from "file-rss". [vbabka@suse.cz: forward-porting, tweak changelog] Signed-off-by: NJerome Marchand <jmarchan@redhat.com> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Following the previous patch, further reduction of /proc/pid/smaps cost is possible for private writable shmem mappings with unpopulated areas where the page walk invokes the .pte_hole function. We can use radix tree iterator for each such area instead of calling find_get_entry() in a loop. This is possible at the extra maintenance cost of introducing another shmem function shmem_partial_swap_usage(). To demonstrate the diference, I have measured this on a process that creates a private writable 2GB mapping of a partially swapped out /dev/shm/file (which cannot employ the optimizations from the prvious patch) and doesn't populate it at all. I time how long does it take to cat /proc/pid/smaps of this process 100 times. Before this patch: real 0m3.831s user 0m0.180s sys 0m3.212s After this patch: real 0m1.176s user 0m0.180s sys 0m0.684s The time is similar to the case where a radix tree iterator is employed on the whole mapping. Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
The previous patch has improved swap accounting for shmem mapping, which however made /proc/pid/smaps more expensive for shmem mappings, as we consult the radix tree for each pte_none entry, so the overal complexity is O(n*log(n)). We can reduce this significantly for mappings that cannot contain COWed pages, because then we can either use the statistics tha shmem object itself tracks (if the mapping contains the whole object, or the swap usage of the whole object is zero), or use the radix tree iterator, which is much more effective than repeated find_get_entry() calls. This patch therefore introduces a function shmem_swap_usage(vma) and makes /proc/pid/smaps use it when possible. Only for writable private mappings of shmem objects (i.e. tmpfs files) with the shmem object itself (partially) swapped outwe have to resort to the find_get_entry() approach. Hopefully such mappings are relatively uncommon. To demonstrate the diference, I have measured this on a process that creates a 2GB mapping and dirties single pages with a stride of 2MB, and time how long does it take to cat /proc/pid/smaps of this process 100 times. Private writable mapping of a /dev/shm/file (the most complex case): real 0m3.831s user 0m0.180s sys 0m3.212s Shared mapping of an almost full mapping of a partially swapped /dev/shm/file (which needs to employ the radix tree iterator). real 0m1.351s user 0m0.096s sys 0m0.768s Same, but with /dev/shm/file not swapped (so no radix tree walk needed) real 0m0.935s user 0m0.128s sys 0m0.344s Private anonymous mapping: real 0m0.949s user 0m0.116s sys 0m0.348s The cost is now much closer to the private anonymous mapping case, unless the shmem mapping is private and writable. Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Currently, /proc/pid/smaps will always show "Swap: 0 kB" for shmem-backed mappings, even if the mapped portion does contain pages that were swapped out. This is because unlike private anonymous mappings, shmem does not change pte to swap entry, but pte_none when swapping the page out. In the smaps page walk, such page thus looks like it was never faulted in. This patch changes smaps_pte_entry() to determine the swap status for such pte_none entries for shmem mappings, similarly to how mincore_page() does it. Swapped out shmem pages are thus accounted for. For private mappings of tmpfs files that COWed some of the pages, swaped out status of the original shmem pages is naturally ignored. If some of the private copies was also swapped out, they are accounted via their page table swap entries, so the resulting reported swap usage is then a sum of both swapped out private copies, and swapped out shmem pages that were not COWed. No double accounting can thus happen. The accounting is arguably still not as precise as for private anonymous mappings, since now we will count also pages that the process in question never accessed, but another process populated them and then let them become swapped out. I believe it is still less confusing and subtle than not showing any swap usage by shmem mappings at all. Swapped out counter might of interest of users who would like to prevent from future swapins during performance critical operation and pre-fault them at their convenience. Especially for larger swapped out regions the cost of swapin is much higher than a fresh page allocation. So a differentiation between pte_none vs. swapped out is important for those usecases. One downside of this patch is that it makes /proc/pid/smaps more expensive for shmem mappings, as we consult the radix tree for each pte_none entry, so the overal complexity is O(n*log(n)). I have measured this on a process that creates a 2GB mapping and dirties single pages with a stride of 2MB, and time how long does it take to cat /proc/pid/smaps of this process 100 times. Private anonymous mapping: real 0m0.949s user 0m0.116s sys 0m0.348s Mapping of a /dev/shm/file: real 0m3.831s user 0m0.180s sys 0m3.212s The difference is rather substantial, so the next patch will reduce the cost for shared or read-only mappings. In a less controlled experiment, I've gathered pids of processes on my desktop that have either '/dev/shm/*' or 'SYSV*' in smaps. This included the Chrome browser and some KDE processes. Again, I've run cat /proc/pid/smaps on each 100 times. Before this patch: real 0m9.050s user 0m0.518s sys 0m8.066s After this patch: real 0m9.221s user 0m0.541s sys 0m8.187s This suggests low impact on average systems. Note that this patch doesn't attempt to adjust the SwapPss field for shmem mappings, which would need extra work to determine who else could have the pages mapped. Thus the value stays zero except for COWed swapped out pages in a shmem mapping, which are accounted as usual. Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NJerome Marchand <jmarchan@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 11月, 2015 4 次提交
-
-
由 Laurent Dufour 提交于
Don't build clear_soft_dirty_pmd() if transparent huge pages are not enabled. Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Laurent Dufour 提交于
As mentioned in the commit 56eecdb9 ("mm: Use ptep/pmdp_set_numa() for updating _PAGE_NUMA bit"), architectures like ppc64 don't do tlb flush in set_pte/pmd functions. So when dealing with existing pte in clear_soft_dirty, the pte must be cleared before being modified. Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Currently there's no easy way to get per-process usage of hugetlb pages, which is inconvenient because userspace applications which use hugetlb typically want to control their processes on the basis of how much memory (including hugetlb) they use. So this patch simply provides easy access to the info via /proc/PID/status. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NJoern Engel <joern@logfs.org> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Currently /proc/PID/smaps provides no usage info for vma(VM_HUGETLB), which is inconvenient when we want to know per-task or per-vma base hugetlb usage. To solve this, this patch adds new fields for hugetlb usage like below: Size: 20480 kB Rss: 0 kB Pss: 0 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 0 kB Anonymous: 0 kB AnonHugePages: 0 kB Shared_Hugetlb: 18432 kB Private_Hugetlb: 2048 kB Swap: 0 kB KernelPageSize: 2048 kB MMUPageSize: 2048 kB Locked: 0 kB VmFlags: rd wr mr mw me de ht [hughd@google.com: fix Private_Hugetlb alignment ] Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NJoern Engel <joern@logfs.org> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 10月, 2015 1 次提交
-
-
由 Martin Schwidefsky 提交于
There are primitives to create and query the software dirty bits in a pte or pmd. But the clearing of the software dirty bits is done in common code with x86 specific page table functions. Add the missing architecture primitives to clear the software dirty bits to allow the feature to be used on non-x86 systems, e.g. the s390 architecture. Acked-by: NCyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 11 9月, 2015 1 次提交
-
-
由 Vladimir Davydov 提交于
Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Reviewed-by: NAndres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 9月, 2015 2 次提交
-
-
由 Minchan Kim 提交于
We want to know per-process workingset size for smart memory management on userland and we use swap(ex, zram) heavily to maximize memory efficiency so workingset includes swap as well as RSS. On such system, if there are lots of shared anonymous pages, it's really hard to figure out exactly how many each process consumes memory(ie, rss + wap) if the system has lots of shared anonymous memory(e.g, android). This patch introduces SwapPss field on /proc/<pid>/smaps so we can get more exact workingset size per process. Bongkyu tested it. Result is below. 1. 50M used swap SwapTotal: 461976 kB SwapFree: 411192 kB $ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}'; 48236 $ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}'; 141184 2. 240M used swap SwapTotal: 461976 kB SwapFree: 216808 kB $ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}'; 230315 $ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}'; 1387744 [akpm@linux-foundation.org: simplify kunmap_atomic() call] Signed-off-by: NMinchan Kim <minchan@kernel.org> Reported-by: NBongkyu Kim <bongkyu.kim@lge.com> Tested-by: NBongkyu Kim <bongkyu.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
This patch sets bit 56 in pagemap if this page is mapped only once. It allows to detect exclusively used pages without exposing PFN: present file exclusive state 0 0 0 non-present 1 1 0 file page mapped somewhere else 1 1 1 file page mapped only here 1 0 0 anon non-CoWed page (shared with parent/child) 1 0 1 anon CoWed page (or never forked) CoWed pages in (MAP_FILE | MAP_PRIVATE) areas are anon in this context. MMap-exclusive bit doesn't reflect potential page-sharing via swapcache: page could be mapped once but has several swap-ptes which point to it. Application could detect that by swap bit in pagemap entry and touch that pte via /proc/pid/mem to get real information. See http://lkml.kernel.org/r/CAEVpBa+_RyACkhODZrRvQLs80iy0sqpdrd0AaP_-tgnX3Y9yNQ@mail.gmail.com Requested by Mark Williamson. [akpm@linux-foundation.org: fix spello] Signed-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: NMark Williamson <mwilliamson@undo-software.com> Tested-by: NMark Williamson <mwilliamson@undo-software.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-