- 29 6月, 2020 19 次提交
-
-
由 James Morse 提交于
fix #28612342 commit eeb2555779471abdbcc6289a52dc54ce513feaf2 upstream When CPER records are found the address of the records is stashed in the struct ghes. Once the records have been processed, this address is overwritten with zero so that it won't be processed again without being re-populated by firmware. This goes wrong if a struct ghes can be processed concurrently, as can happen at probe time when an NMI occurs. If the NMI arrives on another CPU, the probing CPU may call ghes_clear_estatus() on the records before the handler had finished with them. Even on the same CPU, once the interrupted handler is resumed, it will call ghes_clear_estatus() on the NMIs records, this memory may have already been re-used by firmware. Avoid this stashing by letting the caller hold the address. A later patch will do away with the use of ghes->flags in the read/clear code too. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: Nluanshi <zhangliguang@linux.alibaba.com>
-
由 James Morse 提交于
fix #28612342 commit fb7be08f1a091ec243780bfdad4bf0c492057808 upstream Adding new NMI-like notifications duplicates the calls that grow and shrink the estatus pool. This is all pretty pointless, as the size is capped to 64K. Allocate this for each ghes and drop the code that grows and shrinks the pool. Suggested-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: Nluanshi <zhangliguang@linux.alibaba.com>
-
由 James Morse 提交于
fix #28612342 commit e147133a42cb9df6cbc99503fdf58d0e6388bf2a upstream ghes.c has a memory pool it uses for the estatus cache and the estatus queue. The cache is initialised when registering the platform driver. For the queue, an NMI-like notification has to grow/shrink the pool as it is registered and unregistered. This is all pretty noisy when adding new NMI-like notifications, it would be better to replace this with a static pool size based on the number of users. As a precursor, move the call that creates the pool from ghes_init(), into hest.c. Later this will take the number of ghes entries and consolidate the queue allocations. Remove ghes_estatus_pool_exit() as hest.c doesn't have anywhere to put this. The pool is now initialised as part of ACPI's subsys_initcall(): (acpi_init(), acpi_scan_init(), acpi_pci_root_init(), acpi_hest_init()) Before this patch it happened later as a GHES specific device_initcall(). Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: Nluanshi <zhangliguang@linux.alibaba.com>
-
由 James Morse 提交于
fix #28612342 commit 93066e9aefa16beb10bb4a32c2f1657822b57753 upstream Subsequent patches will split up ghes_read_estatus(), at which point passing around the 'silent' flag gets annoying. This is to suppress prink() messages, which prior to commit 42a0bb3f ("printk/nmi: generic solution for safe printk in NMI"), were unsafe in NMI context. This is no longer necessary, remove the flag. printk() messages are batched in a per-cpu buffer and printed via irq-work, or a call back from panic(). Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: Nluanshi <zhangliguang@linux.alibaba.com>
-
由 Jens Axboe 提交于
fix #28871358 commit b2c5d16b72df1116f05c9be16a630ac939d34101 upstream If we have that hook, we know the driver handles bd->last == true in a smart fashion. If it does, even for multiple hardware queues, it's a good idea to flush batches of requests to the device, if we have batches of requests from the submitter. Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jens Axboe 提交于
fix #28871358 commit be94f058f2bde6f0b0ee9059a35daa8e15be308f upstream If we are issuing a list of requests, we know if we're at the last one. If we fail issuing, ensure that we call ->commits_rqs() to flush any potential previous requests. Reviewed-by: NOmar Sandoval <osandov@fb.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jens Axboe 提交于
fix #28871358 commit 944e7c87967c820a0f34a935b1f2799944099750 upstream We need this for blk-mq to kick things into gear, if we told it that we had more IO coming, but then failed to deliver on that promise. Reviewed-by: NOmar Sandoval <osandov@fb.com> Acked-by: NMichael S. Tsirkin <mst@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jens Axboe 提交于
fix #28871358 commit 04f3eafda6e05adc56afed4d3ae6e24aaa429058 upstream Split the command submission and the SQ doorbell ring, and add the doorbell ring as our ->commit_rqs() hook. This allows a list of requests to be issued, with nvme only writing the SQ update when it's necessary. This is more efficient if we have lists of requests to issue, particularly on virtualized hardware, where writing the SQ doorbell is more expensive than on real hardware. For those cases, performance increases of 2-3x have been observed. The use case for this is plugged IO, where blk-mq flushes a batch of requests at the time. Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jens Axboe 提交于
fix #28871358 commit d666ba98f849ad44c4405ecc2180390ebe80f4f9 upstream blk-mq passes information to the hardware about any given request being the last that we will issue in this sequence. The point is that hardware can defer costly doorbell type writes to the last request. But if we run into errors issuing a sequence of requests, we may never send the request with bd->last == true set. For that case, we need a hook that tells the hardware that nothing else is coming right now. For failures returned by the drivers ->queue_rq() hook, the driver is responsible for flushing pending requests, if it uses bd->last to optimize that part. This works like before, no changes there. Reviewed-by: NOmar Sandoval <osandov@fb.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jens Axboe 提交于
fix #28871358 Only do it if we have requests for multiple queues in the same plug. Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Vincent Guittot 提交于
to #28739709 commit bef69dd87828ef5d8ecdab8d857cd3a33cf98675 upstream update_cfs_rq_load_avg() calls cfs_rq_util_change() every time PELT decays, which might be inefficient when the cpufreq driver has rate limitation. When a task is attached on a CPU, we have this call path: update_load_avg() update_cfs_rq_load_avg() cfs_rq_util_change -- > trig frequency update attach_entity_load_avg() cfs_rq_util_change -- > trig frequency update The 1st frequency update will not take into account the utilization of the newly attached task and the 2nd one might be discarded because of rate limitation of the cpufreq driver. update_cfs_rq_load_avg() is only called by update_blocked_averages() and update_load_avg() so we can move the call to cfs_rq_util_change/cpufreq_update_util() into these two functions. It's also interesting to note that update_load_avg() already calls cfs_rq_util_change() directly for the !SMP case. This change will also ensure that cpufreq_update_util() is called even when there is no more CFS rq in the leaf_cfs_rq_list to update, but only IRQ, RT or DL PELT signals. [ mingo: Minor updates. ] Reported-by: NDoug Smythies <dsmythies@telus.net> Tested-by: NDoug Smythies <dsmythies@telus.net> Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: juri.lelli@redhat.com Cc: linux-pm@vger.kernel.org Cc: mgorman@suse.de Cc: rostedt@goodmis.org Cc: sargun@sargun.me Cc: srinivas.pandruvada@linux.intel.com Cc: tj@kernel.org Cc: xiexiuqi@huawei.com Cc: xiezhipeng1@huawei.com Fixes: 039ae8b ("sched/fair: Fix O(nr_cgroups) in the load balancing path") Link: https://lkml.kernel.org/r/1574083279-799-1-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Vincent Guittot 提交于
to #28739709 commit 039ae8bcf7a5f4476f4487e6bf816885fb3fb617 upstream This re-applies the commit reverted here: commit c40f7d74c741 ("sched/fair: Fix infinite loop in update_blocked_averages() by reverting a9e7f654") I.e. now that cfs_rq can be safely removed/added in the list, we can re-apply: commit a9e7f654 ("sched/fair: Fix O(nr_cgroups) in load balance path") Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: sargun@sargun.me Cc: tj@kernel.org Cc: xiexiuqi@huawei.com Cc: xiezhipeng1@huawei.com Link: https://lkml.kernel.org/r/1549469662-13614-3-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Vincent Guittot 提交于
to #28739709 commit 31bc6aeaab1d1de8959b67edbed5c7a4b3cdbe7c upstream Removing a cfs_rq from rq->leaf_cfs_rq_list can break the parent/child ordering of the list when it will be added back. In order to remove an empty and fully decayed cfs_rq, we must remove its children too, so they will be added back in the right order next time. With a normal decay of PELT, a parent will be empty and fully decayed if all children are empty and fully decayed too. In such a case, we just have to ensure that the whole branch will be added when a new task is enqueued. This is default behavior since : commit f6783319737f ("sched/fair: Fix insertion in rq->leaf_cfs_rq_list") In case of throttling, the PELT of throttled cfs_rq will not be updated whereas the parent will. This breaks the assumption made above unless we remove the children of a cfs_rq that is throttled. Then, they will be added back when unthrottled and a sched_entity will be enqueued. As throttled cfs_rq are now removed from the list, we can remove the associated test in update_blocked_averages(). Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: sargun@sargun.me Cc: tj@kernel.org Cc: xiexiuqi@huawei.com Cc: xiezhipeng1@huawei.com Link: https://lkml.kernel.org/r/1549469662-13614-2-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #29028845 cpuacct_update_latency's declaration was changed since 6dbaddaa, but was not changed for the case when CONFIG_SCHED_SLI=n. This leads to a compilation error. Fixes: 6dbaddaa ("alinux: sched: Add cgroup's scheduling latency histograms") Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Christoph Hellwig 提交于
fix #28339081 commit edfbcb321faf07ca970e4191abe061deeb7d3788 upstream The USB buffer allocation code is the only place in the usb core (and in fact the whole kernel) that uses is_device_dma_capable, while the URB mapping code uses the uses_dma flag in struct usb_bus. Switch the buffer allocation to use the uses_dma flag used by the rest of the USB code, and create a helper in hcd.h that checks this flag as well as the CONFIG_HAS_DMA to simplify the caller a bit. Signed-off-by: NChristoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20190811080520.21712-3-hch@lst.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com>
-
由 Christoph Hellwig 提交于
fix #28339081 commit dd3ecf17ba70a70d2c9ef9ba725281b84f8eef12 upstream If the HCD provides a localmem pool we will never use the DMA pools, so don't create them. Fixes: b0310c2f09bb ("USB: use genalloc for USB HCs with local memory") Signed-off-by: NChristoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20190811080520.21712-2-hch@lst.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com>
-
由 Laurentiu Tudor 提交于
fix #28339081 commit 2d7a3dc3e24f43504b1f25eae8195e600f4cce8b upstream With the addition of the local memory allocator, the HCD_LOCAL_MEM flag can be dropped and the checks against it replaced with a check for the localmem_pool ptr being initialized. Signed-off-by: NLaurentiu Tudor <laurentiu.tudor@nxp.com> Tested-by: NFredrik Noring <noring@nocrew.org> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com>
-
由 Laurentiu Tudor 提交于
fix #28339081 commit b0310c2f09bbe8aebefb97ed67949a3a7092aca6 upstream For HCs that have local memory, replace the current DMA API usage with a genalloc generic allocator to manage the mappings for these devices. To help users, introduce a new HCD API, usb_hcd_setup_local_mem() that will setup up the genalloc backing up the device local memory. It will be used in subsequent patches. This is in preparation for dropping the existing "coherent" dma mem declaration APIs. The current implementation was relying on a short circuit in the DMA API that in the end, was acting as an allocator for these type of devices. Signed-off-by: NLaurentiu Tudor <laurentiu.tudor@nxp.com> Tested-by: NFredrik Noring <noring@nocrew.org> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com>
-
由 Fredrik Noring 提交于
fix #28339081 commit da83a722959a82733c3ca60030cc364ca2318c5a upstream gen_pool_dma_zalloc() is a zeroed memory variant of gen_pool_dma_alloc(). Also document the return values of both, and indicate NULL as a "%NULL" constant. Signed-off-by: NFredrik Noring <noring@nocrew.org> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com>
-
- 28 6月, 2020 1 次提交
-
-
由 Zelin Deng 提交于
fix #28886284 On AMD platforms cpu frequency was not able to be tuned as there's no cpufreq driver registered -- intel_pstate has been enabled but it only can be loaded on Intel CPUs. Hence after evaluated and validated on AMD platforms, we decide to enable acpi-cpufreq. acpi-cpufreq won't impact on intel_pstate on Intel platforms as intel_pstate will be loaded in device_initcall while acpi-cpufreq will be loaded in late_initcall. This sequence ensure intel_pstate can be loaded but acpi-cpufreq can not on Intel platforms. Signed-off-by: NZelin Deng <zelin.deng@linux.alibaba.com> Reviewed-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: NArtie Ding <fulin.dn@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 24 6月, 2020 14 次提交
-
-
由 Dietmar Eggemann 提交于
to #28739709 commit af75d1a9a9f75bf030c2f35705f1ff6d226f96fe upstream Since sg_lb_stats::sum_weighted_load is now identical with sg_lb_stats::group_load remove it and replace its use case (calculating load per task) with the latter. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRik van Riel <riel@surriel.com> Acked-by: NVincent Guittot <vincent.guittot@linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20190527062116.11512-7-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit 0e1fef63d92d61ed561e504c3a078a827a0f9bfe upstream The sched domain per rq load index files also disappear from the /proc/sys/kernel/sched_domain/cpuX/domainY directories. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-6-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit 55627e3cd22c315c4a02fe3bbbb7234ec439cb1d upstream The per rq load array values also disappear from the cpu#X sections in /proc/sched_debug. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-5-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit 3d8d53554405952993bb0279ef3ebebc51740074 upstream This reverts: commit 201c373e ("sched/debug: Limit sd->*_idx range on sysctl") Load indexes (sd->*_idx) are no longer needed without rq->cpu_load[]. The range check for load indexes can be removed as well. Get rid of it before the rq->cpu_load[] since it uses CPU_LOAD_IDX_MAX. At the same time, fix the following coding style issues detected by scripts/checkpatch.pl: ERROR: space prohibited before that ',' ERROR: space prohibited before that close parenthesis ')' Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-4-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit 1c1b8a7b03ef50f80f5d0c871ee261c04a6c967e upstream With LB_BIAS disabled, source_load() & target_load() return weighted_cpuload(). Replace both with calls to weighted_cpuload(). The function to obtain the load index (sd->*_idx) for an sd, get_sd_load_idx(), can be removed as well. Finally, get rid of the sched feature LB_BIAS. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-3-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit 5e83eafbfd3b351537c0d74467fc43e8a88f4ae4 upstream With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx] any more. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit f2bedc4705659216bd60948029ad8dfedf923ad9 upstream The CFS class is the only one maintaining and using the CPU wide load (rq->load(.weight)). The last use case of the CPU wide load in CFS's set_next_entity() can be replaced by using the load of the CFS class (rq->cfs.load(.weight)) instead. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Daniel Lezcano 提交于
to #28739709 commit a7fe5190c03f8137ef08db84a58dd4daf2c4785d upstream The function get_loadavg() returns almost always zero. To be more precise, statistically speaking for a total of 1023379 times passing in the function, the load is equal to zero 1020728 times, greater than 100, 610 times, the remaining is between 0 and 5. In 2011, the get_loadavg() was removed from the Android tree because of the above [1]. At this time, the load was: unsigned long this_cpu_load(void) { struct rq *this = this_rq(); return this->cpu_load[0]; } In 2014, the code was changed by commit 372ba8cb (cpuidle: menu: Lookup CPU runqueues less) and the load is: void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) { struct rq *rq = this_rq(); *nr_waiters = atomic_read(&rq->nr_iowait); *load = rq->load.weight; } with the same result. Both measurements show using the load in this code path does no matter anymore. Removing it. [1] https://android.googlesource.com/kernel/common/+/4dedd9f124703207895777ac6e91dacde0f7cc17Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NMel Gorman <mgorman@suse.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Dietmar Eggemann 提交于
to #28739709 commit fdf5f315d5cfaefb7bb8a62ec4bf37b9891837aa upstream LB_BIAS allows the adjustment on how conservative load should be balanced. The rq->cpu_load[idx] array is used for this functionality. It contains weighted CPU load decayed average values over different intervals (idx = 1..4). Idx = 0 is the weighted CPU load itself. The values are updated during scheduler_tick, before idle balance and at nohz exit. There are 5 different types of idx's per sched domain (sd). Each of them is used to index into the rq->cpu_load[idx] array in a specific scenario (busy, idle and newidle for load balancing, forkexec for wake-up slow-path load balancing and wake for affine wakeup based on weight). Only the sd idx's for busy and idle load balancing are set to 2,3 or 1,2 respectively. All the other sd idx's are set to 0. Conservative load balancing is achieved for sd idx's >= 1 by using the min/max (source_load()/target_load()) value between the current weighted CPU load and the rq->cpu_load[sd idx -1] for the busiest(idlest)/local CPU load in load balancing or vice versa in the wake-up slow-path load balancing. There is no conservative balancing for sd idx = 0 since only current weighted CPU load is used in this case. It is very likely that LB_BIAS' influence on load balancing can be neglected (see test results below). This is further supported by: (1) Weighted CPU load today is by itself a decayed average value (PELT) (cfs_rq->avg->runnable_load_avg) and not the instantaneous load (rq->load.weight) it was when LB_BIAS was introduced. (2) Sd imbalance_pct is used for CPU_NEWLY_IDLE and CPU_NOT_IDLE (relate to sd's newidle and busy idx) in find_busiest_group() when comparing busiest and local avg load to make load balancing even more conservative. (3) The sd forkexec and newidle idx are always set to 0 so there is no adjustment on how conservatively load balancing is done here. (4) Affine wakeup based on weight (wake_affine_weight()) will not be impacted since the sd wake idx is always set to 0. Let's disable LB_BIAS by default for a few kernel releases to make sure that no workload and no scheduler topology is affected. The benefit of being able to remove the LB_BIAS dependency from source_load() and target_load() is that the entire rq->cpu_load[idx] code could be removed in this case. It is really hard to say if there is no regression w/o testing this with a lot of different workloads on a lot of different platforms, especially NUMA machines. The following 104 LKP (Linux Kernel Performance) tests were run by the 0-Day guys mostly on multi-socket hosts with a larger number of logical cpus (88, 192). The base for the test was commit b3dae109 ("sched/swait: Rename to exclusive") (tip/sched/core v4.18-rc1). Only 2 out of the 104 tests had a significant change in one of the metrics (fsmark/1x-1t-1HDD-btrfs-nfsv4-4M-60G-NoSync-performance +7% files_per_sec, unixbench/300s-100%-syscall-performance -11% score). Tests which showed a change in one of the metrics are marked with a '*' and this change is listed as well. (a) lkp-bdw-ep3: 88 threads Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz 64G dd-write/10m-1HDD-cfq-btrfs-100dd-performance fsmark/1x-1t-1HDD-xfs-nfsv4-4M-60G-NoSync-performance * fsmark/1x-1t-1HDD-btrfs-nfsv4-4M-60G-NoSync-performance 7.50 7% 8.00 ± 6% fsmark.files_per_sec fsmark/1x-1t-1HDD-btrfs-nfsv4-4M-60G-fsyncBeforeClose-performance fsmark/1x-1t-1HDD-btrfs-4M-60G-NoSync-performance fsmark/1x-1t-1HDD-btrfs-4M-60G-fsyncBeforeClose-performance kbuild/300s-50%-vmlinux_prereq-performance kbuild/300s-200%-vmlinux_prereq-performance kbuild/300s-50%-vmlinux_prereq-performance-1HDD-ext4 kbuild/300s-200%-vmlinux_prereq-performance-1HDD-ext4 (b) lkp-skl-4sp1: 192 threads Intel(R) Xeon(R) Platinum 8160 768G dbench/100%-performance ebizzy/200%-100x-10s-performance hackbench/1600%-process-pipe-performance iperf/300s-cs-localhost-tcp-performance iperf/300s-cs-localhost-udp-performance perf-bench-numa-mem/2t-300M-performance perf-bench-sched-pipe/10000000ops-process-performance perf-bench-sched-pipe/10000000ops-threads-performance schbench/2-16-300-30000-30000-performance tbench/100%-cs-localhost-performance (c) lkp-bdw-ep6: 88 threads Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz 128G stress-ng/100%-60s-pipe-performance unixbench/300s-1-whetstone-double-performance unixbench/300s-1-shell1-performance unixbench/300s-1-shell8-performance unixbench/300s-1-pipe-performance * unixbench/300s-1-context1-performance 312 315 unixbench.score unixbench/300s-1-spawn-performance unixbench/300s-1-syscall-performance unixbench/300s-1-dhry2reg-performance unixbench/300s-1-fstime-performance unixbench/300s-1-fsbuffer-performance unixbench/300s-1-fsdisk-performance unixbench/300s-100%-whetstone-double-performance unixbench/300s-100%-shell1-performance unixbench/300s-100%-shell8-performance unixbench/300s-100%-pipe-performance unixbench/300s-100%-context1-performance unixbench/300s-100%-spawn-performance * unixbench/300s-100%-syscall-performance 3571 ± 3% -11% 3183 ± 4% unixbench.score unixbench/300s-100%-dhry2reg-performance unixbench/300s-100%-fstime-performance unixbench/300s-100%-fsbuffer-performance unixbench/300s-100%-fsdisk-performance unixbench/300s-1-execl-performance unixbench/300s-100%-execl-performance * will-it-scale/brk1-performance 365004 360387 will-it-scale.per_thread_ops * will-it-scale/dup1-performance 432401 437596 will-it-scale.per_thread_ops will-it-scale/eventfd1-performance will-it-scale/futex1-performance will-it-scale/futex2-performance will-it-scale/futex3-performance will-it-scale/futex4-performance will-it-scale/getppid1-performance will-it-scale/lock1-performance will-it-scale/lseek1-performance will-it-scale/lseek2-performance * will-it-scale/malloc1-performance 47025 45817 will-it-scale.per_thread_ops 77499 76529 will-it-scale.per_process_ops will-it-scale/malloc2-performance * will-it-scale/mmap1-performance 123399 120815 will-it-scale.per_thread_ops 152219 149833 will-it-scale.per_process_ops * will-it-scale/mmap2-performance 107327 104714 will-it-scale.per_thread_ops 136405 133765 will-it-scale.per_process_ops will-it-scale/open1-performance * will-it-scale/open2-performance 171570 168805 will-it-scale.per_thread_ops 532644 526202 will-it-scale.per_process_ops will-it-scale/page_fault1-performance will-it-scale/page_fault2-performance will-it-scale/page_fault3-performance will-it-scale/pipe1-performance will-it-scale/poll1-performance * will-it-scale/poll2-performance 176134 172848 will-it-scale.per_thread_ops 281361 275053 will-it-scale.per_process_ops will-it-scale/posix_semaphore1-performance will-it-scale/pread1-performance will-it-scale/pread2-performance will-it-scale/pread3-performance will-it-scale/pthread_mutex1-performance will-it-scale/pthread_mutex2-performance will-it-scale/pwrite1-performance will-it-scale/pwrite2-performance will-it-scale/pwrite3-performance * will-it-scale/read1-performance 1190563 1174833 will-it-scale.per_thread_ops * will-it-scale/read2-performance 1105369 1080427 will-it-scale.per_thread_ops will-it-scale/readseek1-performance * will-it-scale/readseek2-performance 261818 259040 will-it-scale.per_thread_ops will-it-scale/readseek3-performance * will-it-scale/sched_yield-performance 2408059 2382034 will-it-scale.per_thread_ops will-it-scale/signal1-performance will-it-scale/unix1-performance will-it-scale/unlink1-performance will-it-scale/unlink2-performance * will-it-scale/write1-performance 976701 961588 will-it-scale.per_thread_ops * will-it-scale/writeseek1-performance 831898 822448 will-it-scale.per_thread_ops * will-it-scale/writeseek2-performance 228248 225065 will-it-scale.per_thread_ops * will-it-scale/writeseek3-performance 226670 224058 will-it-scale.per_thread_ops will-it-scale/context_switch1-performance aim7/performance-fork_test-2000 * aim7/performance-brk_test-3000 74869 76676 aim7.jobs-per-min aim7/performance-disk_cp-3000 aim7/performance-disk_rd-3000 aim7/performance-sieve-3000 aim7/performance-page_test-3000 aim7/performance-creat-clo-3000 aim7/performance-mem_rtns_1-8000 aim7/performance-disk_wrt-8000 aim7/performance-pipe_cpy-8000 aim7/performance-ram_copy-8000 (d) lkp-avoton3: 8 threads Intel(R) Atom(TM) CPU C2750 @ 2.40GHz 16G netperf/ipv4-900s-200%-cs-localhost-TCP_STREAM-performance Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Li Zhijian <zhijianx.li@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180809135753.21077-1-dietmar.eggemann@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #28739709 Many samples are between 10ms-50ms. To display more informative distribution of latency, divide 10ms-50ms into 5 parts uniformly. Example: $ cat /sys/fs/cgroup/cpuacct/a/cpuacct.wait_latency 0-1ms: 59726433 1-4ms: 167 4-7ms: 0 7-10ms: 0 10-20ms: 5 20-30ms: 0 30-40ms: 3 40-50ms: 0 50-100ms: 0 100-500ms: 0 500-1000ms: 0 1000-5000ms: 0 5000-10000ms: 0 >=10000ms: 0 total(ms): 45554 nr: 59726600 Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #28739709 Sometimes histogram is not precise enough because each sample is roughly accounted into a histogram bar. And average latency is more pratical for some users. This patch adds a "nr" field in 4 latency histogram interfaces, so lat(avg) = total(ms) / nr And compared to histogram, average latency is better to be used as a SLI because of simplicity. Example $ cat /sys/fs/cgroup/cpuacct/a/cpuacct.wait_latency 0-1ms: 4139 1-4ms: 317 4-7ms: 568 7-10ms: 0 10-100ms: 42324 100-500ms: 9131 500-1000ms: 95 1000-5000ms: 134 5000-10000ms: 0 >=10000ms: 0 total(ms): 4256455 nr: 182128 Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #28739709 This patch adds cpuacct.cgroup_wait_latency interface. It exports the histogram of the sched entity's schedule latency. Unlike wait_latency, the sched entity is a cgroup rather than task. This is useful when tasks are not directly clustered under one cgroup. For examples: cgroup1 --- cgroupA --- task1 --- cgroupB --- task2 cgroup2 --- cgroupC --- task3 --- cgroupD --- task4 This is a common cgroup hierarchy used by many applications. With cgroup_wait_latency, we can just read from cgroup1 to know aggregated wait latency information of task1 and task2. The interface output format is identical to cpuacct.wait_latency. Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #28739709 This patch measures time that tasks in cpuacct cgroup blocks. There are two types: blocked due to IO, and others like locks. And they are exported in"cpuacct.ioblock_latency" and "cpuacct.block_latency" respectively. According to histogram, we know the detailed distribution of the duration. And according to total(ms), we know the percentage of time tasks spent off rq, waiting for resources: (△ioblock_latency.total(ms) + △block_latency.total(ms)) / △wall_time The interface output format is identical to cpuacct.wait_latency. Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NXunlei Pang <xlpang@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #28739709 Export wait_latency in "cpuacct.wait_latency", which indicates the time that tasks in a cpuacct cgroup wait on a cfs_rq to be scheduled. This is like "perf sched", but it gives smaller overhead. So it can be used as monitor constantly. wait_latency is useful to debug application's high RT problem. It can tell if it's caused by scheduling or not. If it is, loadavg can tell if it's caused by bad scheduling bahaviour or system overloads. System admins can also use wait_latency to define SLA. To ensure SLA is guaranteed, there are various ways to decrease wait_latency. This feature is disabled by default for performance concerns. It can be switched on dynamically by "echo 0 > /proc/cpusli/sched_lat_enable" Example: $ cat /sys/fs/cgroup/cpuacct/a/cpuacct.wait_latency 0-1ms: 4139 1-4ms: 317 4-7ms: 568 7-10ms: 0 10-100ms: 42324 100-500ms: 9131 500-1000ms: 95 1000-5000ms: 134 5000-10000ms: 0 >=10000ms: 0 total(ms): 4256455 Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NXunlei Pang <xlpang@linux.alibaba.com> Reviewed-by: NShanpei Chen <shanpeic@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
- 23 6月, 2020 6 次提交
-
-
由 Yihao Wu 提交于
to #28739709 Assume workloads are composed of massive short tasks. Then periodical load tracking is unnecessary. Because load tracking should be already guaranteed by frequent sleep and wake-up. If these massive short tasks run in their individual cgroups, the load tracking becomes extremely heavy. This patch adds a switch to bypass scheduler_tick load tracking, in order to reduce scheduler overhead, without sacrificing much balance in this scenario. Performance Tests: 1) 1100+ tasks in their individual cgroups, on a 96-HT Skylake machine sched overhead(each HT): 0.74% -> 0.48% (This test's baseline is from the previous patch) 2) sysbench-threads with 96 threads, running for 5min latency_ms 95th: 63.07 -> 54.01 Besides these, no regression is found on our test platform. Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yihao Wu 提交于
to #28739709 Unless the workloads are IO-bounded, update_blocked_averages doesn't help load balance. This patch adds a switch to bypass update_blocked_averages if prior knowledge about workloads indicates IO is negligible. Performance Tests: 1) 1100+ tasks in their individual cgroups, on a 96-HT Skylake machine sched overhead(each HT): 3.78% -> 0.74% 2) cgroup-overhead benchmark in our sched-test suite on a 96-HT Skylake overhead: 21.06 -> 18.08 3) unixbench context1 with 96 threads running for 1min Score: 15409.40 -> 16821.77 Besides these, UnixBench has some performance ups and downs. But generally, the performance of UnixBench hasn't changed. Signed-off-by: NYihao Wu <wuyihao@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Yang Shi 提交于
task #27327988 The commit ("thp: change CoW semantics for anon-THP") rewrites THP CoW page fault handler to allocate base page only, but there is request to keep the old behavior just in case. So, introduce a new sysfs knob, fast_cow, to control the behavior, the default is the new behavior. Write that knob to 0 to switch to old behavior. Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> [ caspar: fix checkpatch.pl warnings ] Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kirill A. Shutemov 提交于
task #27327988 commit 71a2c112a0f6da497e1b44e18e97b1716c240518 upstream 'max_ptes_shared' specifies how many pages can be shared across multiple processes. Exceeding the number would block the collapse:: /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_shared A higher value may increase memory footprint for some workloads. By default, at least half of pages has to be not shared. [colin.king@canonical.com: fix several spelling mistakes] Link: http://lkml.kernel.org/r/20200420084241.65433-1-colin.king@canonical.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NZi Yan <ziy@nvidia.com> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NZi Yan <ziy@nvidia.com> Acked-by: NYang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-9-kirill.shutemov@linux.intel.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Kirill A. Shutemov 提交于
task #27327988 commit 3917c80280c93a7123f1a3a6dcdb10a3ea19737d upstream Currently we have different copy-on-write semantics for anon- and file-THP. For anon-THP we try to allocate huge page on the write fault, but on file-THP we split PMD and allocate 4k page. Arguably, file-THP semantics is more desirable: we don't necessary want to unshare full PMD range from the parent on the first access. This is the primary reason THP is unusable for some workloads, like Redis. The original THP refcounting didn't allow to have PTE-mapped compound pages, so we had no options, but to allocate huge page on CoW (with fallback to 512 4k pages). The current refcounting doesn't have such limitations and we can cut a lot of complex code out of fault path. khugepaged is now able to recover THP from such ranges if the configuration allows. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NZi Yan <ziy@nvidia.com> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NZi Yan <ziy@nvidia.com> Acked-by: NYang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-8-kirill.shutemov@linux.intel.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Kirill A. Shutemov 提交于
task #27327988 commit 5503fbf2b0b80c1a47a7dca0e4f060f52f522cfd upstream We can collapse PTE-mapped compound pages. We only need to avoid handling them more than once: lock/unlock page only once if it's present in the PMD range multiple times as it handled on compound level. The same goes for LRU isolation and putback. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NZi Yan <ziy@nvidia.com> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NZi Yan <ziy@nvidia.com> Acked-by: NYang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-7-kirill.shutemov@linux.intel.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-