1. 01 10月, 2016 2 次提交
    • D
      libnvdimm, region: move region-mapping input-paramters to nd_mapping_desc · 44c462eb
      Dan Williams 提交于
      Before we add more libnvdimm-private fields to nd_mapping make it clear
      which parameters are input vs libnvdimm internals. Use struct
      nd_mapping_desc instead of struct nd_mapping in nd_region_desc and make
      struct nd_mapping private to libnvdimm.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      44c462eb
    • V
      libnvdimm: clear the internal poison_list when clearing badblocks · e046114a
      Vishal Verma 提交于
      nvdimm_clear_poison cleared the user-visible badblocks, and sent
      commands to the NVDIMM to clear the areas marked as 'poison', but it
      neglected to clear the same areas from the internal poison_list which is
      used to marshal ARS results before sorting them by namespace. As a
      result, once on-demand ARS functionality was added:
      
      37b137ff nfit, libnvdimm: allow an ARS scrub to be triggered on demand
      
      A scrub triggered from either sysfs or an MCE was found to be adding
      stale entries that had been cleared from gendisk->badblocks, but were
      still present in nvdimm_bus->poison_list. Additionally, the stale entries
      could be triggered into producing stale disk->badblocks by simply disabling
      and re-enabling the namespace or region.
      
      This adds the missing step of clearing poison_list entries when clearing
      poison, so that it is always in sync with badblocks.
      
      Fixes: 37b137ff ("nfit, libnvdimm: allow an ARS scrub to be triggered on demand")
      Signed-off-by: NVishal Verma <vishal.l.verma@intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      e046114a
  2. 30 8月, 2016 1 次提交
  3. 24 7月, 2016 1 次提交
  4. 22 7月, 2016 1 次提交
  5. 12 7月, 2016 3 次提交
    • D
      libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() · f284a4f2
      Dan Williams 提交于
      nvdimm_flush() is a replacement for the x86 'pcommit' instruction.  It is
      an optional write flushing mechanism that an nvdimm bus can provide for
      the pmem driver to consume.  In the case of the NFIT nvdimm-bus-provider
      nvdimm_flush() is implemented as a series of flush-hint-address [1]
      writes to each dimm in the interleave set (region) that backs the
      namespace.
      
      The nvdimm_has_flush() routine relies on platform firmware to describe
      the flushing capabilities of a platform.  It uses the heuristic of
      whether an nvdimm bus provider provides flush address data to return a
      ternary result:
      
            1: flush addresses defined
            0: dimm topology described without flush addresses (assume ADR)
       -errno: no topology information, unable to determine flush mechanism
      
      The pmem driver is expected to take the following actions on this ternary
      result:
      
            1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown
            0: do not set, WC or FUA on the queue, take no further action
       -errno: warn and then operate as if nvdimm_has_flush() returned '0'
      
      The caveat of this heuristic is that it can not distinguish the "dimm
      does not have flush address" case from the "platform firmware is broken
      and failed to describe a flush address".  Given we are already
      explicitly trusting the NFIT there's not much more we can do beyond
      blacklisting broken firmwares if they are ever encountered.
      
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      f284a4f2
    • D
      libnvdimm, nfit: move flush hint mapping to region-device driver-data · e5ae3b25
      Dan Williams 提交于
      In preparation for triggering flushes of a DIMM's writes-posted-queue
      (WPQ) via the pmem driver move mapping of flush hint addresses to the
      region driver.  Since this uses devm_nvdimm_memremap() the flush
      addresses will remain mapped while any region to which the dimm belongs
      is active.
      
      We need to communicate more information to the nvdimm core to facilitate
      this mapping, namely each dimm object now carries an array of flush hint
      address resources.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      e5ae3b25
    • D
      libnvdimm, nfit: remove nfit_spa_map() infrastructure · a8a6d2e0
      Dan Williams 提交于
      Now that all shared mappings are handled by devm_nvdimm_memremap() we no
      longer need nfit_spa_map() nor do we need to trigger a callback to the
      bus provider at region disable time.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      a8a6d2e0
  6. 08 7月, 2016 1 次提交
    • D
      libnvdimm: introduce devm_nvdimm_memremap(), convert nfit_spa_map() users · 29b9aa0a
      Dan Williams 提交于
      In preparation for generically mapping flush hint addresses for both the
      BLK and PMEM use case, provide a generic / reference counted mapping
      api.  Given the fact that a dimm may belong to multiple regions (PMEM
      and BLK), the flush hint addresses need to be held valid as long as any
      region associated with the dimm is active.  This is similar to the
      existing BLK-region case where multiple BLK-regions may share an
      aperture mapping.  Up-level this shared / reference-counted mapping
      capability from the nfit driver to a core nvdimm capability.
      
      This eliminates the need for the nd_blk_region.disable() callback.  Note
      that the removal of nfit_spa_map() and related infrastructure is
      deferred to a later patch.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      29b9aa0a
  7. 29 4月, 2016 2 次提交
  8. 06 3月, 2016 3 次提交
    • D
      nfit: disable userspace initiated ars during scrub · 87bf572e
      Dan Williams 提交于
      While the nfit driver is issuing address range scrub commands and
      reaping the results do not permit an ars_start command issued from
      userspace.  The scrub thread assumes that all ars completions are for
      scrubs initiated by platform firmware at boot, or by the nfit driver.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      87bf572e
    • D
      nfit, libnvdimm: async region scrub workqueue · 7ae0fa43
      Dan Williams 提交于
      Introduce a workqueue that will be used to run address range scrub
      asynchronously with the rest of nvdimm device probing.
      
      Userspace still wants notification when probing operations complete, so
      introduce a new callback to flush this workqueue when userspace is
      awaiting probe completion.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      7ae0fa43
    • D
      libnvdimm, nfit: centralize command status translation · aef25338
      Dan Williams 提交于
      The return value from an 'ndctl_fn' reports the command execution
      status, i.e. was the command properly formatted and was it successfully
      submitted to the bus provider.  The new 'cmd_rc' parameter allows the bus
      provider to communicate command specific results, translated into
      common error codes.
      
      Convert the ARS commands to this scheme to:
      
      1/ Consolidate status reporting
      
      2/ Prepare for for expanding ars unit test cases
      
      3/ Make the implementation more generic
      
      Cc: Vishal Verma <vishal.l.verma@intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      aef25338
  9. 24 2月, 2016 1 次提交
  10. 20 2月, 2016 1 次提交
  11. 10 1月, 2016 1 次提交
    • V
      libnvdimm: Add a poison list and export badblocks · 0caeef63
      Vishal Verma 提交于
      During region creation, perform Address Range Scrubs (ARS) for the SPA
      (System Physical Address) ranges to retrieve known poison locations from
      firmware. Add a new data structure 'nd_poison' which is used as a list
      in nvdimm_bus to store these poison locations.
      
      When creating a pmem namespace, if there is any known poison associated
      with its physical address space, convert the poison ranges to bad sectors
      that are exposed using the badblocks interface.
      Signed-off-by: NVishal Verma <vishal.l.verma@intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      0caeef63
  12. 29 8月, 2015 1 次提交
    • D
      libnvdimm, pmem: direct map legacy pmem by default · 004f1afb
      Dan Williams 提交于
      The expectation is that the legacy / non-standard pmem discovery method
      (e820 type-12) will only ever be used to describe small quantities of
      persistent memory.  Larger capacities will be described via the ACPI
      NFIT.  When "allocate struct page from pmem" support is added this default
      policy can be overridden by assigning a legacy pmem namespace to a pfn
      device, however this would be only be necessary if a platform used the
      legacy mechanism to define a very large range.
      
      Cc: Christoph Hellwig <hch@lst.de>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      004f1afb
  13. 26 6月, 2015 5 次提交
    • T
      libnvdimm: Add sysfs numa_node to NVDIMM devices · 74ae66c3
      Toshi Kani 提交于
      Add support of sysfs 'numa_node' to I/O-related NVDIMM devices
      under /sys/bus/nd/devices, regionN, namespaceN.0, and bttN.x.
      
      An example of numa_node values on a 2-socket system with a single
      NVDIMM range on each socket is shown below.
        /sys/bus/nd/devices
        |-- btt0.0/numa_node:0
        |-- btt1.0/numa_node:1
        |-- btt1.1/numa_node:1
        |-- namespace0.0/numa_node:0
        |-- namespace1.0/numa_node:1
        |-- region0/numa_node:0
        |-- region1/numa_node:1
      
      These numa_node files are then linked under the block class of
      their device names.
        /sys/class/block/pmem0/device/numa_node:0
        /sys/class/block/pmem1s/device/numa_node:1
      
      This enables numactl(8) to accept 'block:' and 'file:' paths of
      pmem and btt devices as shown in the examples below.
        numactl --preferred block:pmem0 --show
        numactl --preferred file:/dev/pmem1s --show
      Signed-off-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      74ae66c3
    • T
      libnvdimm: Set numa_node to NVDIMM devices · 41d7a6d6
      Toshi Kani 提交于
      ACPI NFIT table has System Physical Address Range Structure entries that
      describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is
      set in the flags.
      
      Change acpi_nfit_register_region() to map a proximity ID to its node ID,
      and set it to a new numa_node field of nd_region_desc, which is then
      conveyed to the nd_region device.
      
      The device core arranges for btt and namespace devices to inherit their
      node from their parent region.
      Signed-off-by: NToshi Kani <toshi.kani@hp.com>
      [djbw: move set_dev_node() from region.c to bus.c]
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      41d7a6d6
    • D
      libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only · 58138820
      Dan Williams 提交于
      Upon detection of an unarmed dimm in a region, arrange for descendant
      BTT, PMEM, or BLK instances to be read-only.  A dimm is primarily marked
      "unarmed" via flags passed by platform firmware (NFIT).
      
      The flags in the NFIT memory device sub-structure indicate the state of
      the data on the nvdimm relative to its energy source or last "flush to
      persistence".  For the most part there is nothing the driver can do but
      advertise the state of these flags in sysfs and emit a message if
      firmware indicates that the contents of the device may be corrupted.
      However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for
      the block devices incorporating that nvdimm to be marked read-only.
      This is a safe default as the data is still available and new writes are
      held off until the administrator either forces read-write mode, or the
      energy source becomes armed.
      
      A 'read_only' attribute is added to REGION devices to allow for
      overriding the default read-only policy of all descendant block devices.
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      58138820
    • R
      libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory · 047fc8a1
      Ross Zwisler 提交于
      The libnvdimm implementation handles allocating dimm address space (DPA)
      between PMEM and BLK mode interfaces.  After DPA has been allocated from
      a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O
      as a struct bio based block device. Unlike PMEM, BLK is required to
      handle platform specific details like mmio register formats and memory
      controller interleave.  For this reason the libnvdimm generic nd_blk
      driver calls back into the bus provider to carry out the I/O.
      
      This initial implementation handles the BLK interface defined by the
      ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from
      DCR (dimm control region), BDW (block data window), IDT (interleave
      descriptor) NFIT structures and the hardware register format.
      [1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
      [2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
      
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jens Axboe <axboe@fb.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Christoph Hellwig <hch@lst.de>
      Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      047fc8a1
    • V
      nd_btt: atomic sector updates · 5212e11f
      Vishal Verma 提交于
      BTT stands for Block Translation Table, and is a way to provide power
      fail sector atomicity semantics for block devices that have the ability
      to perform byte granularity IO. It relies on the capability of libnvdimm
      namespace devices to do byte aligned IO.
      
      The BTT works as a stacked blocked device, and reserves a chunk of space
      from the backing device for its accounting metadata. It is a bio-based
      driver because all IO is done synchronously, and there is no queuing or
      asynchronous completions at either the device or the driver level.
      
      The BTT uses 'lanes' to index into various 'on-disk' data structures,
      and lanes also act as a synchronization mechanism in case there are more
      CPUs than available lanes. We did a comparison between two lane lock
      strategies - first where we kept an atomic counter around that tracked
      which was the last lane that was used, and 'our' lane was determined by
      atomically incrementing that. That way, for the nr_cpus > nr_lanes case,
      theoretically, no CPU would be blocked waiting for a lane. The other
      strategy was to use the cpu number we're scheduled on to and hash it to
      a lane number. Theoretically, this could block an IO that could've
      otherwise run using a different, free lane. But some fio workloads
      showed that the direct cpu -> lane hash performed faster than tracking
      'last lane' - my reasoning is the cache thrash caused by moving the
      atomic variable made that approach slower than simply waiting out the
      in-progress IO. This supports the conclusion that the driver can be a
      very simple bio-based one that does synchronous IOs instead of queuing.
      
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jens Axboe <axboe@fb.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Neil Brown <neilb@suse.de>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      [jmoyer: fix nmi watchdog timeout in btt_map_init]
      [jmoyer: move btt initialization to module load path]
      [jmoyer: fix memory leak in the btt initialization path]
      [jmoyer: Don't overwrite corrupted arenas]
      Signed-off-by: NVishal Verma <vishal.l.verma@linux.intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      5212e11f
  14. 25 6月, 2015 10 次提交
    • D
      libnvdimm: blk labels and namespace instantiation · 1b40e09a
      Dan Williams 提交于
      A blk label set describes a namespace comprised of one or more
      discontiguous dpa ranges on a single dimm.  They may alias with one or
      more pmem interleave sets that include the given dimm.
      
      This is the runtime/volatile configuration infrastructure for sysfs
      manipulation of 'alt_name', 'uuid', 'size', and 'sector_size'.  A later
      patch will make these settings persistent by writing back the label(s).
      
      Unlike pmem namespaces, multiple blk namespaces can be created per
      region.  Once a blk namespace has been created a new seed device
      (unconfigured child of a parent blk region) is instantiated.  As long as
      a region has 'available_size' != 0 new child namespaces may be created.
      
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Neil Brown <neilb@suse.de>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      1b40e09a
    • D
      libnvdimm: pmem label sets and namespace instantiation. · bf9bccc1
      Dan Williams 提交于
      A complete label set is a PMEM-label per-dimm per-interleave-set where
      all the UUIDs match and the interleave set cookie matches the hosting
      interleave set.
      
      Present sysfs attributes for manipulation of a PMEM-namespace's
      'alt_name', 'uuid', and 'size' attributes.  A later patch will make
      these settings persistent by writing back the label.
      
      Note that PMEM allocations grow forwards from the start of an interleave
      set (lowest dimm-physical-address (DPA)).  BLK-namespaces that alias
      with a PMEM interleave set will grow allocations backward from the
      highest DPA.
      
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Neil Brown <neilb@suse.de>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      bf9bccc1
    • D
      libnvdimm, nfit: add interleave-set state-tracking infrastructure · eaf96153
      Dan Williams 提交于
      On platforms that have firmware support for reading/writing per-dimm
      label space, a portion of the dimm may be accessible via an interleave
      set PMEM mapping in addition to the dimm's BLK (block-data-window
      aperture(s)) interface.  A label, stored in a "configuration data
      region" on the dimm, disambiguates which dimm addresses are accessed
      through which exclusive interface.
      
      Add infrastructure that allows the kernel to block modifications to a
      label in the set while any member dimm is active.  Note that this is
      meant only for enforcing "no modifications of active labels" via the
      coarse ioctl command.  Adding/deleting namespaces from an active
      interleave set is always possible via sysfs.
      
      Another aspect of tracking interleave sets is tracking their integrity
      when DIMMs in a set are physically re-ordered.  For this purpose we
      generate an "interleave-set cookie" that can be recorded in a label and
      validated against the current configuration.  It is the bus provider
      implementation's responsibility to calculate the interleave set cookie
      and attach it to a given region.
      
      Cc: Neil Brown <neilb@suse.de>
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      eaf96153
    • D
      libnvdimm: support for legacy (non-aliasing) nvdimms · 3d88002e
      Dan Williams 提交于
      The libnvdimm region driver is an intermediary driver that translates
      non-volatile "region"s into "namespace" sub-devices that are surfaced by
      persistent memory block-device drivers (PMEM and BLK).
      
      ACPI 6 introduces the concept that a given nvdimm may simultaneously
      offer multiple access modes to its media through direct PMEM load/store
      access, or windowed BLK mode.  Existing nvdimms mostly implement a PMEM
      interface, some offer a BLK-like mode, but never both as ACPI 6 defines.
      If an nvdimm is single interfaced, then there is no need for dimm
      metadata labels.  For these devices we can take the region boundaries
      directly to create a child namespace device (nd_namespace_io).
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      3d88002e
    • D
      libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) · 1f7df6f8
      Dan Williams 提交于
      A "region" device represents the maximum capacity of a BLK range (mmio
      block-data-window(s)), or a PMEM range (DAX-capable persistent memory or
      volatile memory), without regard for aliasing.  Aliasing, in the
      dimm-local address space (DPA), is resolved by metadata on a dimm to
      designate which exclusive interface will access the aliased DPA ranges.
      Support for the per-dimm metadata/label arrvies is in a subsequent
      patch.
      
      The name format of "region" devices is "regionN" where, like dimms, N is
      a global ida index assigned at discovery time.  This id is not reliable
      across reboots nor in the presence of hotplug.  Look to attributes of
      the region or static id-data of the sub-namespace to generate a
      persistent name.  However, if the platform configuration does not change
      it is reasonable to expect the same region id to be assigned at the next
      boot.
      
      "region"s have 2 generic attributes "size", and "mapping"s where:
      - size: the BLK accessible capacity or the span of the
        system physical address range in the case of PMEM.
      
      - mappingN: a tuple describing a dimm's contribution to the region's
        capacity in the format (<nmemX>,<dpa>,<size>).  For a PMEM-region
        there will be at least one mapping per dimm in the interleave set.  For
        a BLK-region there is only "mapping0" listing the starting DPA of the
        BLK-region and the available DPA capacity of that space (matches "size"
        above).
      
      The max number of mappings per "region" is hard coded per the
      constraints of sysfs attribute groups.  That said the number of mappings
      per region should never exceed the maximum number of possible dimms in
      the system.  If the current number turns out to not be enough then the
      "mappings" attribute clarifies how many there are supposed to be. "32
      should be enough for anybody...".
      
      Cc: Neil Brown <neilb@suse.de>
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      1f7df6f8
    • D
      libnvdimm, nvdimm: dimm driver and base libnvdimm device-driver infrastructure · 4d88a97a
      Dan Williams 提交于
      * Implement the device-model infrastructure for loading modules and
        attaching drivers to nvdimm devices.  This is a simple association of a
        nd-device-type number with a driver that has a bitmask of supported
        device types.  To facilitate userspace bind/unbind operations 'modalias'
        and 'devtype', that also appear in the uevent, are added as generic
        sysfs attributes for all nvdimm devices.  The reason for the device-type
        number is to support sub-types within a given parent devtype, be it a
        vendor-specific sub-type or otherwise.
      
      * The first consumer of this infrastructure is the driver
        for dimm devices.  It simply uses control messages to retrieve and
        store the configuration-data image (label set) from each dimm.
      
      Note: nd_device_register() arranges for asynchronous registration of
            nvdimm bus devices by default.
      
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Neil Brown <neilb@suse.de>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      4d88a97a
    • D
      libnvdimm: control (ioctl) messages for nvdimm_bus and nvdimm devices · 62232e45
      Dan Williams 提交于
      Most discovery/configuration of the nvdimm-subsystem is done via sysfs
      attributes.  However, some nvdimm_bus instances, particularly the
      ACPI.NFIT bus, define a small set of messages that can be passed to the
      platform.  For convenience we derive the initial libnvdimm-ioctl command
      formats directly from the NFIT DSM Interface Example formats.
      
          ND_CMD_SMART: media health and diagnostics
          ND_CMD_GET_CONFIG_SIZE: size of the label space
          ND_CMD_GET_CONFIG_DATA: read label space
          ND_CMD_SET_CONFIG_DATA: write label space
          ND_CMD_VENDOR: vendor-specific command passthrough
          ND_CMD_ARS_CAP: report address-range-scrubbing capabilities
          ND_CMD_ARS_START: initiate scrubbing
          ND_CMD_ARS_STATUS: report on scrubbing state
          ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events
      
      If a platform later defines different commands than this set it is
      straightforward to extend support to those formats.
      
      Most of the commands target a specific dimm.  However, the
      address-range-scrubbing commands target the bus.  The 'commands'
      attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported
      commands for that object.
      
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Reported-by: NNicholas Moulin <nicholas.w.moulin@linux.intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      62232e45
    • D
      libnvdimm, nfit: dimm/memory-devices · e6dfb2de
      Dan Williams 提交于
      Enable nvdimm devices to be registered on a nvdimm_bus.  The kernel
      assigned device id for nvdimm devicesis dynamic.  If userspace needs a
      more static identifier it should consult a provider-specific attribute.
      In the case where NFIT is the provider, the 'nmemX/nfit/handle' or
      'nmemX/nfit/serial' attributes may be used for this purpose.
      
      Cc: Neil Brown <neilb@suse.de>
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      e6dfb2de
    • D
      libnvdimm: control character device and nvdimm_bus sysfs attributes · 45def22c
      Dan Williams 提交于
      The control device for a nvdimm_bus is registered as an "nd" class
      device.  The expectation is that there will usually only be one "nd" bus
      registered under /sys/class/nd.  However, we allow for the possibility
      of multiple buses and they will listed in discovery order as
      ndctl0...ndctlN.  This character device hosts the ioctl for passing
      control messages.  The initial command set has a 1:1 correlation with
      the commands listed in the by the "NFIT DSM Example" document [1], but
      this scheme is extensible to future command sets.
      
      Note, nd_ioctl() and the backing ->ndctl() implementation are defined in
      a subsequent patch.  This is simply the initial registrations and sysfs
      attributes.
      
      [1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
      
      Cc: Neil Brown <neilb@suse.de>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      45def22c
    • D
      libnvdimm, nfit: initial libnvdimm infrastructure and NFIT support · b94d5230
      Dan Williams 提交于
      A struct nvdimm_bus is the anchor device for registering nvdimm
      resources and interfaces, for example, a character control device,
      nvdimm devices, and I/O region devices.  The ACPI NFIT (NVDIMM Firmware
      Interface Table) is one possible platform description for such
      non-volatile memory resources in a system.  The nfit.ko driver attaches
      to the "ACPI0012" device that indicates the presence of the NFIT and
      parses the table to register a struct nvdimm_bus instance.
      
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Lv Zheng <lv.zheng@intel.com>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NJeff Moyer <jmoyer@redhat.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      b94d5230