1. 09 4月, 2009 1 次提交
  2. 05 2月, 2009 1 次提交
  3. 31 1月, 2009 1 次提交
  4. 17 12月, 2008 1 次提交
  5. 01 12月, 2008 1 次提交
  6. 09 9月, 2008 1 次提交
  7. 25 8月, 2008 1 次提交
    • A
      xen: implement CPU hotplugging · d68d82af
      Alex Nixon 提交于
      Note the changes from 2.6.18-xen CPU hotplugging:
      
      A vcpu_down request from the remote admin via Xenbus both hotunplugs the
      CPU, and disables it by removing it from the cpu_present map, and removing
      its entry in /sys.
      
      A vcpu_up request from the remote admin only re-enables the CPU, and does
      not immediately bring the CPU up. A udev event is emitted, which can be
      caught by the user if he wishes to automatically re-up CPUs when available,
      or implement a more complex policy.
      Signed-off-by: NAlex Nixon <alex.nixon@citrix.com>
      Acked-by: NJeremy Fitzhardinge <jeremy@goop.org>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      d68d82af
  8. 22 8月, 2008 1 次提交
  9. 31 7月, 2008 1 次提交
  10. 24 7月, 2008 1 次提交
  11. 16 7月, 2008 5 次提交
  12. 09 7月, 2008 1 次提交
  13. 26 6月, 2008 1 次提交
  14. 02 6月, 2008 2 次提交
  15. 27 5月, 2008 4 次提交
  16. 25 4月, 2008 3 次提交
  17. 17 4月, 2008 1 次提交
  18. 17 10月, 2007 3 次提交
    • J
      xen: deal with stale cr3 values when unpinning pagetables · 9f79991d
      Jeremy Fitzhardinge 提交于
      When a pagetable is no longer in use, it must be unpinned so that its
      pages can be freed.  However, this is only possible if there are no
      stray uses of the pagetable.  The code currently deals with all the
      usual cases, but there's a rare case where a vcpu is changing cr3, but
      is doing so lazily, and the change hasn't actually happened by the time
      the pagetable is unpinned, even though it appears to have been completed.
      
      This change adds a second per-cpu cr3 variable - xen_current_cr3 -
      which tracks the actual state of the vcpu cr3.  It is only updated once
      the actual hypercall to set cr3 has been completed.  Other processors
      wishing to unpin a pagetable can check other vcpu's xen_current_cr3
      values to see if any cross-cpu IPIs are needed to clean things up.
      
      [ Stable folks: 2.6.23 bugfix ]
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Cc: Stable Kernel <stable@kernel.org>
      9f79991d
    • J
      xen: yield to IPI target if necessary · f0d73394
      Jeremy Fitzhardinge 提交于
      When sending a call-function IPI to a vcpu, yield if the vcpu isn't
      running.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      f0d73394
    • J
      paravirt: clean up lazy mode handling · 8965c1c0
      Jeremy Fitzhardinge 提交于
      Currently, the set_lazy_mode pv_op is overloaded with 5 functions:
       1. enter lazy cpu mode
       2. leave lazy cpu mode
       3. enter lazy mmu mode
       4. leave lazy mmu mode
       5. flush pending batched operations
      
      This complicates each paravirt backend, since it needs to deal with
      all the possible state transitions, handling flushing, etc. In
      particular, flushing is quite distinct from the other 4 functions, and
      seems to just cause complication.
      
      This patch removes the set_lazy_mode operation, and adds "enter" and
      "leave" lazy mode operations on mmu_ops and cpu_ops.  All the logic
      associated with enter and leaving lazy states is now in common code
      (basically BUG_ONs to make sure that no mode is current when entering
      a lazy mode, and make sure that the mode is current when leaving).
      Also, flush is handled in a common way, by simply leaving and
      re-entering the lazy mode.
      
      The result is that the Xen, lguest and VMI lazy mode implementations
      are much simpler.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Cc: Andi Kleen <ak@suse.de>
      Cc: Zach Amsden <zach@vmware.com>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: Avi Kivity <avi@qumranet.com>
      Cc: Anthony Liguory <aliguori@us.ibm.com>
      Cc: "Glauber de Oliveira Costa" <glommer@gmail.com>
      Cc: Jun Nakajima <jun.nakajima@intel.com>
      8965c1c0
  19. 11 10月, 2007 1 次提交
  20. 18 7月, 2007 7 次提交
    • J
      xen: use iret directly when possible · 9ec2b804
      Jeremy Fitzhardinge 提交于
      Most of the time we can simply use the iret instruction to exit the
      kernel, rather than having to use the iret hypercall - the only
      exception is if we're returning into vm86 mode, or from delivering an
      NMI (which we don't support yet).
      
      When running native, iret has the behaviour of testing for a pending
      interrupt atomically with re-enabling interrupts.  Unfortunately
      there's no way to do this with Xen, so there's a window in which we
      could get a recursive exception after enabling events but before
      actually returning to userspace.
      
      This causes a problem: if the nested interrupt causes one of the
      task's TIF_WORK_MASK flags to be set, they will not be checked again
      before returning to userspace.  This means that pending work may be
      left pending indefinitely, until the process enters and leaves the
      kernel again.  The net effect is that a pending signal or reschedule
      event could be delayed for an unbounded amount of time.
      
      To deal with this, the xen event upcall handler checks to see if the
      EIP is within the critical section of the iret code, after events
      are (potentially) enabled up to the iret itself.  If its within this
      range, it calls the iret critical section fixup, which adjusts the
      stack to deal with any unrestored registers, and then shifts the
      stack frame up to replace the previous invocation.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      9ec2b804
    • J
      xen: Attempt to patch inline versions of common operations · 6487673b
      Jeremy Fitzhardinge 提交于
      This patchs adds the mechanism to allow us to patch inline versions of
      common operations.
      
      The implementations of the direct-access versions save_fl, restore_fl,
      irq_enable and irq_disable are now in assembler, and the same code is
      used for both out of line and inline uses.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Cc: Chris Wright <chrisw@sous-sol.org>
      Cc: Keir Fraser <keir@xensource.com>
      6487673b
    • J
      xen: Place vcpu_info structure into per-cpu memory · 60223a32
      Jeremy Fitzhardinge 提交于
      An experimental patch for Xen allows guests to place their vcpu_info
      structs anywhere.  We try to use this to place the vcpu_info into the
      PDA, which allows direct access.
      
      If this works, then switch to using direct access operations for
      irq_enable, disable, save_fl and restore_fl.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Cc: Chris Wright <chrisw@sous-sol.org>
      Cc: Keir Fraser <keir@xensource.com>
      60223a32
    • J
      xen: SMP guest support · f87e4cac
      Jeremy Fitzhardinge 提交于
      This is a fairly straightforward Xen implementation of smp_ops.
      
      Xen has its own IPI mechanisms, and has no dependency on any
      APIC-based IPI.  The smp_ops hooks and the flush_tlb_others pv_op
      allow a Xen guest to avoid all APIC code in arch/i386 (the only apic
      operation is a single apic_read for the apic version number).
      
      One subtle point which needs to be addressed is unpinning pagetables
      when another cpu may have a lazy tlb reference to the pagetable. Xen
      will not allow an in-use pagetable to be unpinned, so we must find any
      other cpus with a reference to the pagetable and get them to shoot
      down their references.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Signed-off-by: NChris Wright <chrisw@sous-sol.org>
      Cc: Benjamin LaHaise <bcrl@kvack.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Andi Kleen <ak@suse.de>
      f87e4cac
    • J
      xen: Implement sched_clock · ab550288
      Jeremy Fitzhardinge 提交于
      Implement xen_sched_clock, which returns the number of ns the current
      vcpu has been actually in an unstolen state (ie, running or blocked,
      vs runnable-but-not-running, or offline) since boot.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Acked-by: NChris Wright <chrisw@sous-sol.org>
      Cc: john stultz <johnstul@us.ibm.com>
      ab550288
    • J
      xen: Complete pagetable pinning · f4f97b3e
      Jeremy Fitzhardinge 提交于
      Xen requires all active pagetables to be marked read-only.  When the
      base of the pagetable is loaded into %cr3, the hypervisor validates
      the entire pagetable and only allows the load to proceed if it all
      checks out.
      
      This is pretty slow, so to mitigate this cost Xen has a notion of
      pinned pagetables.  Pinned pagetables are pagetables which are
      considered to be active even if no processor's cr3 is pointing to is.
      This means that it must remain read-only and all updates are validated
      by the hypervisor.  This makes context switches much cheaper, because
      the hypervisor doesn't need to revalidate the pagetable each time.
      
      This also adds a new paravirt hook which is called during setup once
      the zones and memory allocator have been initialized.  When the
      init_mm pagetable is first built, the struct page array does not yet
      exist, and so there's nowhere to put he init_mm pagetable's PG_pinned
      flags.  Once the zones are initialized and the struct page array
      exists, we can set the PG_pinned flags for those pages.
      
      This patch also adds the Xen support for pte pages allocated out of
      highmem (highpte) by implementing xen_kmap_atomic_pte.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Signed-off-by: NChris Wright <chrisw@sous-sol.org>
      Cc: Zach Amsden <zach@vmware.com>
      f4f97b3e
    • J
      xen: Core Xen implementation · 5ead97c8
      Jeremy Fitzhardinge 提交于
      This patch is a rollup of all the core pieces of the Xen
      implementation, including:
       - booting and setup
       - pagetable setup
       - privileged instructions
       - segmentation
       - interrupt flags
       - upcalls
       - multicall batching
      
      BOOTING AND SETUP
      
      The vmlinux image is decorated with ELF notes which tell the Xen
      domain builder what the kernel's requirements are; the domain builder
      then constructs the address space accordingly and starts the kernel.
      
      Xen has its own entrypoint for the kernel (contained in an ELF note).
      The ELF notes are set up by xen-head.S, which is included into head.S.
      In principle it could be linked separately, but it seems to provoke
      lots of binutils bugs.
      
      Because the domain builder starts the kernel in a fairly sane state
      (32-bit protected mode, paging enabled, flat segments set up), there's
      not a lot of setup needed before starting the kernel proper.  The main
      steps are:
        1. Install the Xen paravirt_ops, which is simply a matter of a
           structure assignment.
        2. Set init_mm to use the Xen-supplied pagetables (analogous to the
           head.S generated pagetables in a native boot).
        3. Reserve address space for Xen, since it takes a chunk at the top
           of the address space for its own use.
        4. Call start_kernel()
      
      PAGETABLE SETUP
      
      Once we hit the main kernel boot sequence, it will end up calling back
      via paravirt_ops to set up various pieces of Xen specific state.  One
      of the critical things which requires a bit of extra care is the
      construction of the initial init_mm pagetable.  Because Xen places
      tight constraints on pagetables (an active pagetable must always be
      valid, and must always be mapped read-only to the guest domain), we
      need to be careful when constructing the new pagetable to keep these
      constraints in mind.  It turns out that the easiest way to do this is
      use the initial Xen-provided pagetable as a template, and then just
      insert new mappings for memory where a mapping doesn't already exist.
      
      This means that during pagetable setup, it uses a special version of
      xen_set_pte which ignores any attempt to remap a read-only page as
      read-write (since Xen will map its own initial pagetable as RO), but
      lets other changes to the ptes happen, so that things like NX are set
      properly.
      
      PRIVILEGED INSTRUCTIONS AND SEGMENTATION
      
      When the kernel runs under Xen, it runs in ring 1 rather than ring 0.
      This means that it is more privileged than user-mode in ring 3, but it
      still can't run privileged instructions directly.  Non-performance
      critical instructions are dealt with by taking a privilege exception
      and trapping into the hypervisor and emulating the instruction, but
      more performance-critical instructions have their own specific
      paravirt_ops.  In many cases we can avoid having to do any hypercalls
      for these instructions, or the Xen implementation is quite different
      from the normal native version.
      
      The privileged instructions fall into the broad classes of:
        Segmentation: setting up the GDT and the GDT entries, LDT,
           TLS and so on.  Xen doesn't allow the GDT to be directly
           modified; all GDT updates are done via hypercalls where the new
           entries can be validated.  This is important because Xen uses
           segment limits to prevent the guest kernel from damaging the
           hypervisor itself.
        Traps and exceptions: Xen uses a special format for trap entrypoints,
           so when the kernel wants to set an IDT entry, it needs to be
           converted to the form Xen expects.  Xen sets int 0x80 up specially
           so that the trap goes straight from userspace into the guest kernel
           without going via the hypervisor.  sysenter isn't supported.
        Kernel stack: The esp0 entry is extracted from the tss and provided to
           Xen.
        TLB operations: the various TLB calls are mapped into corresponding
           Xen hypercalls.
        Control registers: all the control registers are privileged.  The most
           important is cr3, which points to the base of the current pagetable,
           and we handle it specially.
      
      Another instruction we treat specially is CPUID, even though its not
      privileged.  We want to control what CPU features are visible to the
      rest of the kernel, and so CPUID ends up going into a paravirt_op.
      Xen implements this mainly to disable the ACPI and APIC subsystems.
      
      INTERRUPT FLAGS
      
      Xen maintains its own separate flag for masking events, which is
      contained within the per-cpu vcpu_info structure.  Because the guest
      kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely
      ignored (and must be, because even if a guest domain disables
      interrupts for itself, it can't disable them overall).
      
      (A note on terminology: "events" and interrupts are effectively
      synonymous.  However, rather than using an "enable flag", Xen uses a
      "mask flag", which blocks event delivery when it is non-zero.)
      
      There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which
      are implemented to manage the Xen event mask state.  The only thing
      worth noting is that when events are unmasked, we need to explicitly
      see if there's a pending event and call into the hypervisor to make
      sure it gets delivered.
      
      UPCALLS
      
      Xen needs a couple of upcall (or callback) functions to be implemented
      by each guest.  One is the event upcalls, which is how events
      (interrupts, effectively) are delivered to the guests.  The other is
      the failsafe callback, which is used to report errors in either
      reloading a segment register, or caused by iret.  These are
      implemented in i386/kernel/entry.S so they can jump into the normal
      iret_exc path when necessary.
      
      MULTICALL BATCHING
      
      Xen provides a multicall mechanism, which allows multiple hypercalls
      to be issued at once in order to mitigate the cost of trapping into
      the hypervisor.  This is particularly useful for context switches,
      since the 4-5 hypercalls they would normally need (reload cr3, update
      TLS, maybe update LDT) can be reduced to one.  This patch implements a
      generic batching mechanism for hypercalls, which gets used in many
      places in the Xen code.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Signed-off-by: NChris Wright <chrisw@sous-sol.org>
      Cc: Ian Pratt <ian.pratt@xensource.com>
      Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
      Cc: Adrian Bunk <bunk@stusta.de>
      5ead97c8