- 13 11月, 2019 6 次提交
-
-
由 Pawan Gupta 提交于
commit c2955f270a84762343000f103e0640d29c7a96f3 upstream. Transactional Synchronization Extensions (TSX) may be used on certain processors as part of a speculative side channel attack. A microcode update for existing processors that are vulnerable to this attack will add a new MSR - IA32_TSX_CTRL to allow the system administrator the option to disable TSX as one of the possible mitigations. The CPUs which get this new MSR after a microcode upgrade are the ones which do not set MSR_IA32_ARCH_CAPABILITIES.MDS_NO (bit 5) because those CPUs have CPUID.MD_CLEAR, i.e., the VERW implementation which clears all CPU buffers takes care of the TAA case as well. [ Note that future processors that are not vulnerable will also support the IA32_TSX_CTRL MSR. ] Add defines for the new IA32_TSX_CTRL MSR and its bits. TSX has two sub-features: 1. Restricted Transactional Memory (RTM) is an explicitly-used feature where new instructions begin and end TSX transactions. 2. Hardware Lock Elision (HLE) is implicitly used when certain kinds of "old" style locks are used by software. Bit 7 of the IA32_ARCH_CAPABILITIES indicates the presence of the IA32_TSX_CTRL MSR. There are two control bits in IA32_TSX_CTRL MSR: Bit 0: When set, it disables the Restricted Transactional Memory (RTM) sub-feature of TSX (will force all transactions to abort on the XBEGIN instruction). Bit 1: When set, it disables the enumeration of the RTM and HLE feature (i.e. it will make CPUID(EAX=7).EBX{bit4} and CPUID(EAX=7).EBX{bit11} read as 0). The other TSX sub-feature, Hardware Lock Elision (HLE), is unconditionally disabled by the new microcode but still enumerated as present by CPUID(EAX=7).EBX{bit4}, unless disabled by IA32_TSX_CTRL_MSR[1] - TSX_CTRL_CPUID_CLEAR. Signed-off-by: NPawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NNeelima Krishnan <neelima.krishnan@intel.com> Reviewed-by: NMark Gross <mgross@linux.intel.com> Reviewed-by: NTony Luck <tony.luck@intel.com> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Paolo Bonzini 提交于
commit 0c54914d0c52a15db9954a76ce80fee32cf318f4 upstream. Similar to AMD bits, set the Intel bits from the vendor-independent feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care about the vendor and they should be set on AMD processors as well. Suggested-by: NJim Mattson <jmattson@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Kan Liang 提交于
[ Upstream commit 75be6f703a141b048590d659a3954c4fedd30bba ] The events in the same group don't start or stop simultaneously. Here is the ftrace when enabling event group for uncore_iio_0: # perf stat -e "{uncore_iio_0/event=0x1/,uncore_iio_0/event=0xe/}" <idle>-0 [000] d.h. 8959.064832: read_msr: a41, value b2b0b030 //Read counter reg of IIO unit0 counter0 <idle>-0 [000] d.h. 8959.064835: write_msr: a48, value 400001 //Write Ctrl reg of IIO unit0 counter0 to enable counter0. <------ Although counter0 is enabled, Unit Ctrl is still freezed. Nothing will count. We are still good here. <idle>-0 [000] d.h. 8959.064836: read_msr: a40, value 30100 //Read Unit Ctrl reg of IIO unit0 <idle>-0 [000] d.h. 8959.064838: write_msr: a40, value 30000 //Write Unit Ctrl reg of IIO unit0 to enable all counters in the unit by clear Freeze bit <------Unit0 is un-freezed. Counter0 has been enabled. Now it starts counting. But counter1 has not been enabled yet. The issue starts here. <idle>-0 [000] d.h. 8959.064846: read_msr: a42, value 0 //Read counter reg of IIO unit0 counter1 <idle>-0 [000] d.h. 8959.064847: write_msr: a49, value 40000e //Write Ctrl reg of IIO unit0 counter1 to enable counter1. <------ Now, counter1 just starts to count. Counter0 has been running for a while. Current code un-freezes the Unit Ctrl right after the first counter is enabled. The subsequent group events always loses some counter values. Implement pmu_enable and pmu_disable support for uncore, which can help to batch hardware accesses. No one uses uncore_enable_box and uncore_disable_box. Remove them. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-drivers-review@eclists.intel.com Cc: linux-perf@eclists.intel.com Fixes: 087bfbb0 ("perf/x86: Add generic Intel uncore PMU support") Link: https://lkml.kernel.org/r/1572014593-31591-1-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Kim Phillips 提交于
[ Upstream commit e431e79b60603079d269e0c2a5177943b95fa4b6 ] This saves us writing the IBS control MSR twice when disabling the event. I searched revision guides for all families since 10h, and did not find occurrence of erratum #420, nor anything remotely similar: so we isolate the secondary MSR write to family 10h only. Also unconditionally update the count mask for IBS Op implementations that have read & writeable current count (CurCnt) fields in addition to the MaxCnt field. These bits were reserved on prior implementations, and therefore shouldn't have negative impact. Signed-off-by: NKim Phillips <kim.phillips@amd.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: c9574fe0 ("perf/x86-ibs: Implement workaround for IBS erratum #420") Link: https://lkml.kernel.org/r/20191023150955.30292-2-kim.phillips@amd.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Kim Phillips 提交于
[ Upstream commit 317b96bb14303c7998dbcd5bc606bd8038fdd4b4 ] The loop that reads all the IBS MSRs into *buf stopped one MSR short of reading the IbsOpData register, which contains the RipInvalid status bit. Fix the offset_max assignment so the MSR gets read, so the RIP invalid evaluation is based on what the IBS h/w output, instead of what was left in memory. Signed-off-by: NKim Phillips <kim.phillips@amd.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: d47e8238 ("perf/x86-ibs: Take instruction pointer from ibs sample") Link: https://lkml.kernel.org/r/20191023150955.30292-1-kim.phillips@amd.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Jan Beulich 提交于
commit fe6f85ca121e9c74e7490fe66b0c5aae38e332c3 upstream. The removal of the LDR initialization in the bigsmp_32 APIC code unearthed a problem in setup_local_APIC(). The code checks unconditionally for a mismatch of the logical APIC id by comparing the early APIC id which was initialized in get_smp_config() with the actual LDR value in the APIC. Due to the removal of the bogus LDR initialization the check now can trigger on bigsmp_32 APIC systems emitting a warning for every booting CPU. This is of course a false positive because the APIC is not using logical destination mode. Restrict the check and the possibly resulting fixup to systems which are actually using the APIC in logical destination mode. [ tglx: Massaged changelog and added Cc stable ] Fixes: bae3a8d3308 ("x86/apic: Do not initialize LDR and DFR for bigsmp") Signed-off-by: NJan Beulich <jbeulich@suse.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/666d8f91-b5a8-1afd-7add-821e72a35f03@suse.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 06 11月, 2019 5 次提交
-
-
由 Tom Lendacky 提交于
[ Upstream commit df4d29732fdad43a51284f826bec3e6ded177540 ] It turns out that the NMI latency workaround from commit: 6d3edaae16c6 ("x86/perf/amd: Resolve NMI latency issues for active PMCs") ends up being too conservative and results in the perf NMI handler claiming NMIs too easily on AMD hardware when the NMI watchdog is active. This has an impact, for example, on the hpwdt (HPE watchdog timer) module. This module can produce an NMI that is used to reset the system. It registers an NMI handler for the NMI_UNKNOWN type and relies on the fact that nothing has claimed an NMI so that its handler will be invoked when the watchdog device produces an NMI. After the referenced commit, the hpwdt module is unable to process its generated NMI if the NMI watchdog is active, because the current NMI latency mitigation results in the NMI being claimed by the perf NMI handler. Update the AMD perf NMI latency mitigation workaround to, instead, use a window of time. Whenever a PMC is handled in the perf NMI handler, set a timestamp which will act as a perf NMI window. Any NMIs arriving within that window will be claimed by perf. Anything outside that window will not be claimed by perf. The value for the NMI window is set to 100 msecs. This is a conservative value that easily covers any NMI latency in the hardware. While this still results in a window in which the hpwdt module will not receive its NMI, the window is now much, much smaller. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Jerry Hoemann <jerry.hoemann@hpe.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 6d3edaae16c6 ("x86/perf/amd: Resolve NMI latency issues for active PMCs") Link: https://lkml.kernel.org/r/Message-ID: Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Kan Liang 提交于
[ Upstream commit 8d7c6ac3b2371eb1cbc9925a88f4d10efff374de ] Comet Lake is the new 10th Gen Intel processor. Add two new CPU model numbers to the Intel family list. The CPU model numbers are not published in the SDM yet but they come from an authoritative internal source. [ bp: Touch up commit message. ] Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NTony Luck <tony.luck@intel.com> Cc: ak@linux.intel.com Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1570549810-25049-2-git-send-email-kan.liang@linux.intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Boris Ostrovsky 提交于
[ Upstream commit c6875f3aacf2a5a913205accddabf0bfb75cac76 ] Currently execution of panic() continues until Xen's panic notifier (xen_panic_event()) is called at which point we make a hypercall that never returns. This means that any notifier that is supposed to be called later as well as significant part of panic() code (such as pstore writes from kmsg_dump()) is never executed. There is no reason for xen_panic_event() to be this last point in execution since panic()'s emergency_restart() will call into xen_emergency_restart() from where we can perform our hypercall. Nevertheless, we will provide xen_legacy_crash boot option that will preserve original behavior during crash. This option could be used, for example, if running kernel dumper (which happens after panic notifiers) is undesirable. Reported-by: NJames Dingwall <james@dingwall.me.uk> Signed-off-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Dave Young 提交于
[ Upstream commit 2ecb7402cfc7f22764e7bbc80790e66eadb20560 ] kexec reboot fails randomly in UEFI based KVM guest. The firmware just resets while calling efi_delete_dummy_variable(); Unfortunately I don't know how to debug the firmware, it is also possible a potential problem on real hardware as well although nobody reproduced it. The intention of the efi_delete_dummy_variable is to trigger garbage collection when entering virtual mode. But SetVirtualAddressMap can only run once for each physical reboot, thus kexec_enter_virtual_mode() is not necessarily a good place to clean a dummy object. Drop the efi_delete_dummy_variable so that kexec reboot can work. Signed-off-by: NDave Young <dyoung@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMatthew Garrett <mjg59@google.com> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Jerry Snitselaar <jsnitsel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Wunner <lukas@wunner.de> Cc: Lyude Paul <lyude@redhat.com> Cc: Octavian Purdila <octavian.purdila@intel.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott Talbert <swt@techie.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Cc: linux-integrity@vger.kernel.org Link: https://lkml.kernel.org/r/20191002165904.8819-8-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Kan Liang 提交于
[ Upstream commit 00ae831dfe4474ef6029558f5eb3ef0332d80043 ] Add the Atom Tremont model number to the Intel family list. [ Tony: Also update comment at head of file to say "_X" suffix is also used for microserver parts. ] Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NQiuxu Zhuo <qiuxu.zhuo@intel.com> Signed-off-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Aristeu Rozanski <aris@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-edac <linux-edac@vger.kernel.org> Cc: Mauro Carvalho Chehab <mchehab@s-opensource.com> Cc: Megha Dey <megha.dey@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190125195902.17109-4-tony.luck@intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 29 10月, 2019 3 次提交
-
-
由 Sean Christopherson 提交于
commit 7a22e03b0c02988e91003c505b34d752a51de344 upstream. Check that the per-cpu cluster mask pointer has been set prior to clearing a dying cpu's bit. The per-cpu pointer is not set until the target cpu reaches smp_callin() during CPUHP_BRINGUP_CPU, whereas the teardown function, x2apic_dead_cpu(), is associated with the earlier CPUHP_X2APIC_PREPARE. If an error occurs before the cpu is awakened, e.g. if do_boot_cpu() itself fails, x2apic_dead_cpu() will dereference the NULL pointer and cause a panic. smpboot: do_boot_cpu failed(-22) to wakeup CPU#1 BUG: kernel NULL pointer dereference, address: 0000000000000008 RIP: 0010:x2apic_dead_cpu+0x1a/0x30 Call Trace: cpuhp_invoke_callback+0x9a/0x580 _cpu_up+0x10d/0x140 do_cpu_up+0x69/0xb0 smp_init+0x63/0xa9 kernel_init_freeable+0xd7/0x229 ? rest_init+0xa0/0xa0 kernel_init+0xa/0x100 ret_from_fork+0x35/0x40 Fixes: 023a6117 ("x86/apic/x2apic: Simplify cluster management") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20191001205019.5789-1-sean.j.christopherson@intel.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Steve Wahl 提交于
commit 2aa85f246c181b1fa89f27e8e20c5636426be624 upstream. Our hardware (UV aka Superdome Flex) has address ranges marked reserved by the BIOS. Access to these ranges is caught as an error, causing the BIOS to halt the system. Initial page tables mapped a large range of physical addresses that were not checked against the list of BIOS reserved addresses, and sometimes included reserved addresses in part of the mapped range. Including the reserved range in the map allowed processor speculative accesses to the reserved range, triggering a BIOS halt. Used early in booting, the page table level2_kernel_pgt addresses 1 GiB divided into 2 MiB pages, and it was set up to linearly map a full 1 GiB of physical addresses that included the physical address range of the kernel image, as chosen by KASLR. But this also included a large range of unused addresses on either side of the kernel image. And unlike the kernel image's physical address range, this extra mapped space was not checked against the BIOS tables of usable RAM addresses. So there were times when the addresses chosen by KASLR would result in processor accessible mappings of BIOS reserved physical addresses. The kernel code did not directly access any of this extra mapped space, but having it mapped allowed the processor to issue speculative accesses into reserved memory, causing system halts. This was encountered somewhat rarely on a normal system boot, and much more often when starting the crash kernel if "crashkernel=512M,high" was specified on the command line (this heavily restricts the physical address of the crash kernel, in our case usually within 1 GiB of reserved space). The solution is to invalidate the pages of this table outside the kernel image's space before the page table is activated. It fixes this problem on our hardware. [ bp: Touchups. ] Signed-off-by: NSteve Wahl <steve.wahl@hpe.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Acked-by: NDave Hansen <dave.hansen@linux.intel.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Baoquan He <bhe@redhat.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: dimitri.sivanich@hpe.com Cc: Feng Tang <feng.tang@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jordan Borgner <mail@jordan-borgner.de> Cc: Juergen Gross <jgross@suse.com> Cc: mike.travis@hpe.com Cc: russ.anderson@hpe.com Cc: stable@vger.kernel.org Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com> Link: https://lkml.kernel.org/r/9c011ee51b081534a7a15065b1681d200298b530.1569358539.git.steve.wahl@hpe.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Ross Lagerwall 提交于
[ Upstream commit df359f0d09dc029829b66322707a2f558cb720f7 ] Other parts of the kernel expect these nonblocking EFI callbacks to exist and crash when running under Xen. Since the implementations of xen_efi_set_variable() and xen_efi_query_variable_info() do not take any locks, use them for the nonblocking callbacks too. Signed-off-by: NRoss Lagerwall <ross.lagerwall@citrix.com> Reviewed-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 18 10月, 2019 1 次提交
-
-
由 Janakarajan Natarajan 提交于
commit 454de1e7d970d6bc567686052329e4814842867c upstream. As per "AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System Instructions", MWAITX EAX[7:4]+1 specifies the optional hint of the optimized C-state. For C0 state, EAX[7:4] should be set to 0xf. Currently, a value of 0xf is set for EAX[3:0] instead of EAX[7:4]. Fix this by changing MWAITX_DISABLE_CSTATES from 0xf to 0xf0. This hasn't had any implications so far because setting reserved bits in EAX is simply ignored by the CPU. [ bp: Fixup comment in delay_mwaitx() and massage. ] Signed-off-by: NJanakarajan Natarajan <Janakarajan.Natarajan@amd.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20191007190011.4859-1-Janakarajan.Natarajan@amd.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 12 10月, 2019 4 次提交
-
-
由 Sean Christopherson 提交于
[ Upstream commit 567926cca99ba1750be8aae9c4178796bf9bb90b ] Current versions of Intel's SDM incorrectly state that "bits 31:15 of the VM-Entry exception error-code field" must be zero. In reality, bits 31:16 must be zero, i.e. error codes are 16-bit values. The bogus error code check manifests as an unexpected VM-Entry failure due to an invalid code field (error number 7) in L1, e.g. when injecting a #GP with error_code=0x9f00. Nadav previously reported the bug[*], both to KVM and Intel, and fixed the associated kvm-unit-test. [*] https://patchwork.kernel.org/patch/11124749/Reported-by: NNadav Amit <namit@vmware.com> Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Arvind Sankar 提交于
[ Upstream commit ca14c996afe7228ff9b480cf225211cc17212688 ] Since commit: b059f801a937 ("x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGS") kexec breaks if GCC_PLUGIN_STACKLEAK=y is enabled, as the purgatory contains undefined references to stackleak_track_stack. Attempting to load a kexec kernel results in this failure: kexec: Undefined symbol: stackleak_track_stack kexec-bzImage64: Loading purgatory failed Fix this by disabling the stackleak plugin for the purgatory. Signed-off-by: NArvind Sankar <nivedita@alum.mit.edu> Reviewed-by: NNick Desaulniers <ndesaulniers@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: b059f801a937 ("x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGS") Link: https://lkml.kernel.org/r/20190923171753.GA2252517@rani.riverdale.lanSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Jack Wang 提交于
During backport f7eea636c3d5 ("KVM: nVMX: handle page fault in vmread"), there was a mistake the exception reference should be passed to function kvm_write_guest_virt_system, instead of NULL, other wise, we will get NULL pointer deref, eg kvm-unit-test triggered a NULL pointer deref below: [ 948.518437] kvm [24114]: vcpu0, guest rIP: 0x407ef9 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x3, nop [ 949.106464] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 [ 949.106707] PGD 0 P4D 0 [ 949.106872] Oops: 0002 [#1] SMP [ 949.107038] CPU: 2 PID: 24126 Comm: qemu-2.7 Not tainted 4.19.77-pserver #4.19.77-1+feature+daily+update+20191005.1625+a4168bb~deb9 [ 949.107283] Hardware name: Dell Inc. Precision Tower 3620/09WH54, BIOS 2.7.3 01/31/2018 [ 949.107549] RIP: 0010:kvm_write_guest_virt_system+0x12/0x40 [kvm] [ 949.107719] Code: c0 5d 41 5c 41 5d 41 5e 83 f8 03 41 0f 94 c0 41 c1 e0 02 e9 b0 ed ff ff 0f 1f 44 00 00 48 89 f0 c6 87 59 56 00 00 01 48 89 d6 <49> c7 00 00 00 00 00 89 ca 49 c7 40 08 00 00 00 00 49 c7 40 10 00 [ 949.108044] RSP: 0018:ffffb31b0a953cb0 EFLAGS: 00010202 [ 949.108216] RAX: 000000000046b4d8 RBX: ffff9e9f415b0000 RCX: 0000000000000008 [ 949.108389] RDX: ffffb31b0a953cc0 RSI: ffffb31b0a953cc0 RDI: ffff9e9f415b0000 [ 949.108562] RBP: 00000000d2e14928 R08: 0000000000000000 R09: 0000000000000000 [ 949.108733] R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffffffffc8 [ 949.108907] R13: 0000000000000002 R14: ffff9e9f4f26f2e8 R15: 0000000000000000 [ 949.109079] FS: 00007eff8694c700(0000) GS:ffff9e9f51a80000(0000) knlGS:0000000031415928 [ 949.109318] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 949.109495] CR2: 0000000000000000 CR3: 00000003be53b002 CR4: 00000000003626e0 [ 949.109671] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 949.109845] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 949.110017] Call Trace: [ 949.110186] handle_vmread+0x22b/0x2f0 [kvm_intel] [ 949.110356] ? vmexit_fill_RSB+0xc/0x30 [kvm_intel] [ 949.110549] kvm_arch_vcpu_ioctl_run+0xa98/0x1b30 [kvm] [ 949.110725] ? kvm_vcpu_ioctl+0x388/0x5d0 [kvm] [ 949.110901] kvm_vcpu_ioctl+0x388/0x5d0 [kvm] [ 949.111072] do_vfs_ioctl+0xa2/0x620 Signed-off-by: NJack Wang <jinpu.wang@cloud.ionos.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Wanpeng Li 提交于
commit 3ca94192278ca8de169d78c085396c424be123b3 upstream. Reported by syzkaller: WARNING: CPU: 0 PID: 6544 at /home/kernel/data/kvm/arch/x86/kvm//vmx/vmx.c:4689 handle_desc+0x37/0x40 [kvm_intel] CPU: 0 PID: 6544 Comm: a.out Tainted: G OE 5.3.0-rc4+ #4 RIP: 0010:handle_desc+0x37/0x40 [kvm_intel] Call Trace: vmx_handle_exit+0xbe/0x6b0 [kvm_intel] vcpu_enter_guest+0x4dc/0x18d0 [kvm] kvm_arch_vcpu_ioctl_run+0x407/0x660 [kvm] kvm_vcpu_ioctl+0x3ad/0x690 [kvm] do_vfs_ioctl+0xa2/0x690 ksys_ioctl+0x6d/0x80 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x74/0x720 entry_SYSCALL_64_after_hwframe+0x49/0xbe When CR4.UMIP is set, guest should have UMIP cpuid flag. Current kvm set_sregs function doesn't have such check when userspace inputs sregs values. SECONDARY_EXEC_DESC is enabled on writes to CR4.UMIP in vmx_set_cr4 though guest doesn't have UMIP cpuid flag. The testcast triggers handle_desc warning when executing ltr instruction since guest architectural CR4 doesn't set UMIP. This patch fixes it by adding valid CR4 and CPUID combination checking in __set_sregs. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=138efb99600000 Reported-by: syzbot+0f1819555fbdce992df9@syzkaller.appspotmail.com Cc: stable@vger.kernel.org Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 05 10月, 2019 10 次提交
-
-
由 Sean Christopherson 提交于
commit 16cfacc8085782dab8e365979356ce1ca87fd6cc upstream. Manually generate the PDPTR reserved bit mask when explicitly loading PDPTRs. The reserved bits that are being tracked by the MMU reflect the current paging mode, which is unlikely to be PAE paging in the vast majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation, __set_sregs(), etc... This can cause KVM to incorrectly signal a bad PDPTR, or more likely, miss a reserved bit check and subsequently fail a VM-Enter due to a bad VMCS.GUEST_PDPTR. Add a one off helper to generate the reserved bits instead of sharing code across the MMU's calculations and the PDPTR emulation. The PDPTR reserved bits are basically set in stone, and pushing a helper into the MMU's calculation adds unnecessary complexity without improving readability. Oppurtunistically fix/update the comment for load_pdptrs(). Note, the buggy commit also introduced a deliberate functional change, "Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was effectively (and correctly) reverted by commit cd9ae5fe ("KVM: x86: Fix page-tables reserved bits"). A bit of SDM archaeology shows that the SDM from late 2008 had a bug (likely a copy+paste error) where it listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and always have been reserved. Fixes: 20c466b5 ("KVM: Use rsvd_bits_mask in load_pdptrs()") Cc: stable@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Reported-by: NDoug Reiland <doug.reiland@intel.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: NPeter Xu <peterx@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Jan Dakinevich 提交于
commit c8848cee74ff05638e913582a476bde879c968ad upstream. x86_emulate_instruction() takes into account ctxt->have_exception flag during instruction decoding, but in practice this flag is never set in x86_decode_insn(). Fixes: 6ea6e843 ("KVM: x86: inject exceptions produced by x86_decode_insn") Cc: stable@vger.kernel.org Cc: Denis Lunev <den@virtuozzo.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Signed-off-by: NJan Dakinevich <jan.dakinevich@virtuozzo.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Jan Dakinevich 提交于
commit 8530a79c5a9f4e29e6ffb35ec1a79d81f4968ec8 upstream. inject_emulated_exception() returns true if and only if nested page fault happens. However, page fault can come from guest page tables walk, either nested or not nested. In both cases we should stop an attempt to read under RIP and give guest to step over its own page fault handler. This is also visible when an emulated instruction causes a #GP fault and the VMware backdoor is enabled. To handle the VMware backdoor, KVM intercepts #GP faults; with only the next patch applied, x86_emulate_instruction() injects a #GP but returns EMULATE_FAIL instead of EMULATE_DONE. EMULATE_FAIL causes handle_exception_nmi() (or gp_interception() for SVM) to re-inject the original #GP because it thinks emulation failed due to a non-VMware opcode. This patch prevents the issue as x86_emulate_instruction() will return EMULATE_DONE after injecting the #GP. Fixes: 6ea6e843 ("KVM: x86: inject exceptions produced by x86_decode_insn") Cc: stable@vger.kernel.org Cc: Denis Lunev <den@virtuozzo.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Signed-off-by: NJan Dakinevich <jan.dakinevich@virtuozzo.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Gayatri Kammela 提交于
[ Upstream commit 6e1c32c5dbb4b90eea8f964c2869d0bde050dbe0 ] Add the model numbers/CPUIDs of Tiger Lake mobile and desktop to the Intel family. Suggested-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NGayatri Kammela <gayatri.kammela@intel.com> Signed-off-by: NTony Luck <tony.luck@intel.com> Reviewed-by: NTony Luck <tony.luck@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rahul Tanwar <rahul.tanwar@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190905193020.14707-2-tony.luck@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Song Liu 提交于
[ Upstream commit 825d0b73cd7526b0bb186798583fae810091cbac ] pti_clone_pmds() assumes that the supplied address is either: - properly PUD/PMD aligned or - the address is actually mapped which means that independently of the mapping level (PUD/PMD/PTE) the next higher mapping exists. If that's not the case the unaligned address can be incremented by PUD or PMD size incorrectly. All callers supply mapped and/or aligned addresses, but for the sake of robustness it's better to handle that case properly and to emit a warning. [ tglx: Rewrote changelog and added WARN_ON_ONCE() ] Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908282352470.1938@nanos.tec.linutronix.deSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Thomas Gleixner 提交于
[ Upstream commit 990784b57731192b7d90c8d4049e6318d81e887d ] When PTI is disabled at boot time either because the CPU is not affected or PTI has been disabled on the command line, the boot code still calls into pti_finalize() which then unconditionally invokes: pti_clone_entry_text() pti_clone_kernel_text() pti_clone_kernel_text() was called unconditionally before the 32bit support was added and 32bit added the call to pti_clone_entry_text(). The call has no side effects as cloning the page tables into the available second one, which was allocated for PTI does not create damage. But it does not make sense either and in case that this functionality would be extended later this might actually lead to hard to diagnose issues. Neither function should be called when PTI is runtime disabled. Make the invocation conditional. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NDave Hansen <dave.hansen@linux.intel.com> Acked-by: NIngo Molnar <mingo@kernel.org> Acked-by: NSong Liu <songliubraving@fb.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190828143124.063353972@linutronix.deSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Neil Horman 提交于
[ Upstream commit 743dac494d61d991967ebcfab92e4f80dc7583b3 ] On x86, CPUs are limited in the number of interrupts they can have affined to them as they only support 256 interrupt vectors per CPU. 32 vectors are reserved for the CPU and the kernel reserves another 22 for internal purposes. That leaves 202 vectors for assignement to devices. When an interrupt is set up or the affinity is changed by the kernel or the administrator, the vector assignment code attempts to honor the requested affinity mask. If the vector space on the CPUs in that affinity mask is exhausted the code falls back to a wider set of CPUs and assigns a vector on a CPU outside of the requested affinity mask silently. While the effective affinity is reflected in the corresponding /proc/irq/$N/effective_affinity* files the silent breakage of the requested affinity can lead to unexpected behaviour for administrators. Add a pr_warn() when this happens so that adminstrators get at least informed about it in the syslog. [ tglx: Massaged changelog and made the pr_warn() more informative ] Reported-by: djuran@redhat.com Signed-off-by: NNeil Horman <nhorman@tuxdriver.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: djuran@redhat.com Link: https://lkml.kernel.org/r/20190822143421.9535-1-nhorman@tuxdriver.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Thomas Gleixner 提交于
[ Upstream commit 2640da4cccf5cc613bf26f0998b9e340f4b5f69c ] If the APIC was already enabled on entry of setup_local_APIC() then disabling it soft via the SPIV register makes a lot of sense. That masks all LVT entries and brings it into a well defined state. Otherwise previously enabled LVTs which are not touched in the setup function stay unmasked and might surprise the just booting kernel. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190722105219.068290579@linutronix.deSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Grzegorz Halat 提交于
[ Upstream commit 747d5a1bf293dcb33af755a6d285d41b8c1ea010 ] A reboot request sends an IPI via the reboot vector and waits for all other CPUs to stop. If one or more CPUs are in critical regions with interrupts disabled then the IPI is not handled on those CPUs and the shutdown hangs if native_stop_other_cpus() is called with the wait argument set. Such a situation can happen when one CPU was stopped within a lock held section and another CPU is trying to acquire that lock with interrupts disabled. There are other scenarios which can cause such a lockup as well. In theory the shutdown should be attempted by an NMI IPI after the timeout period elapsed. Though the wait loop after sending the reboot vector IPI prevents this. It checks the wait request argument and the timeout. If wait is set, which is true for sys_reboot() then it won't fall through to the NMI shutdown method after the timeout period has finished. This was an oversight when the NMI shutdown mechanism was added to handle the 'reboot IPI is not working' situation. The mechanism was added to deal with stuck panic shutdowns, which do not have the wait request set, so the 'wait request' case was probably not considered. Remove the wait check from the post reboot vector IPI wait loop and enforce that the wait loop in the NMI fallback path is invoked even if NMI IPIs are disabled or the registration of the NMI handler fails. That second wait loop will then hang if not all CPUs shutdown and the wait argument is set. [ tglx: Avoid the hard to parse line break in the NMI fallback path, add comments and massage the changelog ] Fixes: 7d007d21 ("x86/reboot: Use NMI to assist in shutting down if IRQ fails") Signed-off-by: NGrzegorz Halat <ghalat@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Don Zickus <dzickus@redhat.com> Link: https://lkml.kernel.org/r/20190628122813.15500-1-ghalat@redhat.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Thomas Gleixner 提交于
[ Upstream commit cc8bf191378c1da8ad2b99cf470ee70193ace84e ] In course of developing shorthand based IPI support issues with the function which tries to clear eventually pending ISR bits in the local APIC were observed. 1) O-day testing triggered the WARN_ON() in apic_pending_intr_clear(). This warning is emitted when the function fails to clear pending ISR bits or observes pending IRR bits which are not delivered to the CPU after the stale ISR bit(s) are ACK'ed. Unfortunately the function only emits a WARN_ON() and fails to dump the IRR/ISR content. That's useless for debugging. Feng added spot on debug printk's which revealed that the stale IRR bit belonged to the APIC timer interrupt vector, but adding ad hoc debug code does not help with sporadic failures in the field. Rework the loop so the full IRR/ISR contents are saved and on failure dumped. 2) The loop termination logic is interesting at best. If the machine has no TSC or cpu_khz is not known yet it tries 1 million times to ack stale IRR/ISR bits. What? With TSC it uses the TSC to calculate the loop termination. It takes a timestamp at entry and terminates the loop when: (rdtsc() - start_timestamp) >= (cpu_hkz << 10) That's roughly one second. Both methods are problematic. The APIC has 256 vectors, which means that in theory max. 256 IRR/ISR bits can be set. In practice this is impossible and the chance that more than a few bits are set is close to zero. With the pure loop based approach the 1 million retries are complete overkill. With TSC this can terminate too early in a guest which is running on a heavily loaded host even with only a couple of IRR/ISR bits set. The reason is that after acknowledging the highest priority ISR bit, pending IRRs must get serviced first before the next round of acknowledge can take place as the APIC (real and virtualized) does not honour EOI without a preceeding interrupt on the CPU. And every APIC read/write takes a VMEXIT if the APIC is virtualized. While trying to reproduce the issue 0-day reported it was observed that the guest was scheduled out long enough under heavy load that it terminated after 8 iterations. Make the loop terminate after 512 iterations. That's plenty enough in any case and does not take endless time to complete. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190722105219.158847694@linutronix.deSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 21 9月, 2019 5 次提交
-
-
由 Tianyu Lan 提交于
[ Upstream commit 4030b4c585c41eeefec7bd20ce3d0e100a0f2e4d ] When the 'start' parameter is >= 0xFF000000 on 32-bit systems, or >= 0xFFFFFFFF'FF000000 on 64-bit systems, fill_gva_list() gets into an infinite loop. With such inputs, 'cur' overflows after adding HV_TLB_FLUSH_UNIT and always compares as less than end. Memory is filled with guest virtual addresses until the system crashes. Fix this by never incrementing 'cur' to be larger than 'end'. Reported-by: NJong Hyun Park <park.jonghyun@yonsei.ac.kr> Signed-off-by: NTianyu Lan <Tianyu.Lan@microsoft.com> Reviewed-by: NMichael Kelley <mikelley@microsoft.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 2ffd9e33 ("x86/hyper-v: Use hypercall for remote TLB flush") Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Peter Zijlstra 提交于
[ Upstream commit 9b8bd476e78e89c9ea26c3b435ad0201c3d7dbf5 ] Identical to __put_user(); the __get_user() argument evalution will too leak UBSAN crud into the __uaccess_begin() / __uaccess_end() region. While uncommon this was observed to happen for: drivers/xen/gntdev.c: if (__get_user(old_status, batch->status[i])) where UBSAN added array bound checking. This complements commit: 6ae865615fc4 ("x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation") Tested-by Sedat Dilek <sedat.dilek@gmail.com> Reported-by: NRandy Dunlap <rdunlap@infradead.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: broonie@kernel.org Cc: sfr@canb.auug.org.au Cc: akpm@linux-foundation.org Cc: Randy Dunlap <rdunlap@infradead.org> Cc: mhocko@suse.cz Cc: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20190829082445.GM2369@hirez.programming.kicks-ass.netSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Kim Phillips 提交于
[ Upstream commit 0f4cd769c410e2285a4e9873a684d90423f03090 ] When counting dispatched micro-ops with cnt_ctl=1, in order to prevent sample bias, IBS hardware preloads the least significant 7 bits of current count (IbsOpCurCnt) with random values, such that, after the interrupt is handled and counting resumes, the next sample taken will be slightly perturbed. The current count bitfield is in the IBS execution control h/w register, alongside the maximum count field. Currently, the IBS driver writes that register with the maximum count, leaving zeroes to fill the current count field, thereby overwriting the random bits the hardware preloaded for itself. Fix the driver to actually retain and carry those random bits from the read of the IBS control register, through to its write, instead of overwriting the lower current count bits with zeroes. Tested with: perf record -c 100001 -e ibs_op/cnt_ctl=1/pp -a -C 0 taskset -c 0 <workload> 'perf annotate' output before: 15.70 65: addsd %xmm0,%xmm1 17.30 add $0x1,%rax 15.88 cmp %rdx,%rax je 82 17.32 72: test $0x1,%al jne 7c 7.52 movapd %xmm1,%xmm0 5.90 jmp 65 8.23 7c: sqrtsd %xmm1,%xmm0 12.15 jmp 65 'perf annotate' output after: 16.63 65: addsd %xmm0,%xmm1 16.82 add $0x1,%rax 16.81 cmp %rdx,%rax je 82 16.69 72: test $0x1,%al jne 7c 8.30 movapd %xmm1,%xmm0 8.13 jmp 65 8.24 7c: sqrtsd %xmm1,%xmm0 8.39 jmp 65 Tested on Family 15h and 17h machines. Machines prior to family 10h Rev. C don't have the RDWROPCNT capability, and have the IbsOpCurCnt bitfield reserved, so this patch shouldn't affect their operation. It is unknown why commit db98c5fa ("perf/x86: Implement 64-bit counter support for IBS") ignored the lower 4 bits of the IbsOpCurCnt field; the number of preloaded random bits has always been 7, AFAICT. Signed-off-by: NKim Phillips <kim.phillips@amd.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: "Arnaldo Carvalho de Melo" <acme@kernel.org> Cc: <x86@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "Borislav Petkov" <bp@alien8.de> Cc: Stephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: "Namhyung Kim" <namhyung@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20190826195730.30614-1-kim.phillips@amd.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Josh Hunt 提交于
[ Upstream commit 44d3bbb6f5e501b873218142fe08cdf62a4ac1f3 ] We see our Nehalem machines reporting 'perfevents: irq loop stuck!' in some cases when using perf: perfevents: irq loop stuck! WARNING: CPU: 0 PID: 3485 at arch/x86/events/intel/core.c:2282 intel_pmu_handle_irq+0x37b/0x530 ... RIP: 0010:intel_pmu_handle_irq+0x37b/0x530 ... Call Trace: <NMI> ? perf_event_nmi_handler+0x2e/0x50 ? intel_pmu_save_and_restart+0x50/0x50 perf_event_nmi_handler+0x2e/0x50 nmi_handle+0x6e/0x120 default_do_nmi+0x3e/0x100 do_nmi+0x102/0x160 end_repeat_nmi+0x16/0x50 ... ? native_write_msr+0x6/0x20 ? native_write_msr+0x6/0x20 </NMI> intel_pmu_enable_event+0x1ce/0x1f0 x86_pmu_start+0x78/0xa0 x86_pmu_enable+0x252/0x310 __perf_event_task_sched_in+0x181/0x190 ? __switch_to_asm+0x41/0x70 ? __switch_to_asm+0x35/0x70 ? __switch_to_asm+0x41/0x70 ? __switch_to_asm+0x35/0x70 finish_task_switch+0x158/0x260 __schedule+0x2f6/0x840 ? hrtimer_start_range_ns+0x153/0x210 schedule+0x32/0x80 schedule_hrtimeout_range_clock+0x8a/0x100 ? hrtimer_init+0x120/0x120 ep_poll+0x2f7/0x3a0 ? wake_up_q+0x60/0x60 do_epoll_wait+0xa9/0xc0 __x64_sys_epoll_wait+0x1a/0x20 do_syscall_64+0x4e/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fdeb1e96c03 ... Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: acme@kernel.org Cc: Josh Hunt <johunt@akamai.com> Cc: bpuranda@akamai.com Cc: mingo@redhat.com Cc: jolsa@redhat.com Cc: tglx@linutronix.de Cc: namhyung@kernel.org Cc: alexander.shishkin@linux.intel.com Link: https://lkml.kernel.org/r/1566256411-18820-1-git-send-email-johunt@akamai.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
由 Thomas Gleixner 提交于
[ Upstream commit 3e5bedc2c258341702ddffbd7688c5e6eb01eafa ] Rahul Tanwar reported the following bug on DT systems: > 'ioapic_dynirq_base' contains the virtual IRQ base number. Presently, it is > updated to the end of hardware IRQ numbers but this is done only when IOAPIC > configuration type is IOAPIC_DOMAIN_LEGACY or IOAPIC_DOMAIN_STRICT. There is > a third type IOAPIC_DOMAIN_DYNAMIC which applies when IOAPIC configuration > comes from devicetree. > > See dtb_add_ioapic() in arch/x86/kernel/devicetree.c > > In case of IOAPIC_DOMAIN_DYNAMIC (DT/OF based system), 'ioapic_dynirq_base' > remains to zero initialized value. This means that for OF based systems, > virtual IRQ base will get set to zero. Such systems will very likely not even boot. For DT enabled machines ioapic_dynirq_base is irrelevant and not updated, so simply map the IRQ base 1:1 instead. Reported-by: NRahul Tanwar <rahul.tanwar@linux.intel.com> Tested-by: NRahul Tanwar <rahul.tanwar@linux.intel.com> Tested-by: NAndy Shevchenko <andriy.shevchenko@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: alan@linux.intel.com Cc: bp@alien8.de Cc: cheol.yong.kim@intel.com Cc: qi-ming.wu@intel.com Cc: rahul.tanwar@intel.com Cc: rppt@linux.ibm.com Cc: tony.luck@intel.com Link: http://lkml.kernel.org/r/20190821081330.1187-1-rahul.tanwar@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 19 9月, 2019 4 次提交
-
-
由 Linus Torvalds 提交于
commit 42e0e95474fc6076b5cd68cab8fa0340a1797a72 upstream. One of the very few warnings I have in the current build comes from arch/x86/boot/edd.c, where I get the following with a gcc9 build: arch/x86/boot/edd.c: In function ‘query_edd’: arch/x86/boot/edd.c:148:11: warning: taking address of packed member of ‘struct boot_params’ may result in an unaligned pointer value [-Waddress-of-packed-member] 148 | mbrptr = boot_params.edd_mbr_sig_buffer; | ^~~~~~~~~~~ This warning triggers because we throw away all the CFLAGS and then make a new set for REALMODE_CFLAGS, so the -Wno-address-of-packed-member we added in the following commit is not present: 6f303d60534c ("gcc-9: silence 'address-of-packed-member' warning") The simplest solution for now is to adjust the warning for this version of CFLAGS as well, but it would definitely make sense to examine whether REALMODE_CFLAGS could be derived from CFLAGS, so that it picks up changes in the compiler flags environment automatically. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NBorislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Steve Wahl 提交于
x86/purgatory: Change compiler flags from -mcmodel=kernel to -mcmodel=large to fix kexec relocation errors commit e16c2983fba0fa6763e43ad10916be35e3d8dc05 upstream. The last change to this Makefile caused relocation errors when loading a kdump kernel. Restore -mcmodel=large (not -mcmodel=kernel), -ffreestanding, and -fno-zero-initialized-bsss, without reverting to the former practice of resetting KBUILD_CFLAGS. Purgatory.ro is a standalone binary that is not linked against the rest of the kernel. Its image is copied into an array that is linked to the kernel, and from there kexec relocates it wherever it desires. With the previous change to compiler flags, the error "kexec: Overflow in relocation type 11 value 0x11fffd000" was encountered when trying to load the crash kernel. This is from kexec code trying to relocate the purgatory.ro object. From the error message, relocation type 11 is R_X86_64_32S. The x86_64 ABI says: "The R_X86_64_32 and R_X86_64_32S relocations truncate the computed value to 32-bits. The linker must verify that the generated value for the R_X86_64_32 (R_X86_64_32S) relocation zero-extends (sign-extends) to the original 64-bit value." This type of relocation doesn't work when kexec chooses to place the purgatory binary in memory that is not reachable with 32 bit addresses. The compiler flag -mcmodel=kernel allows those type of relocations to be emitted, so revert to using -mcmodel=large as was done before. Also restore the -ffreestanding and -fno-zero-initialized-bss flags because they are appropriate for a stand alone piece of object code which doesn't explicitly zero the bss, and one other report has said undefined symbols are encountered without -ffreestanding. These identical compiler flag changes need to happen for every object that becomes part of the purgatory.ro object, so gather them together first into PURGATORY_CFLAGS_REMOVE and PURGATORY_CFLAGS, and then apply them to each of the objects that have C source. Do not apply any of these flags to kexec-purgatory.o, which is not part of the standalone object but part of the kernel proper. Tested-by: NVaibhav Rustagi <vaibhavrustagi@google.com> Tested-by: NAndreas Smas <andreas@lonelycoder.com> Signed-off-by: NSteve Wahl <steve.wahl@hpe.com> Reviewed-by: NNick Desaulniers <ndesaulniers@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: None Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: clang-built-linux@googlegroups.com Cc: dimitri.sivanich@hpe.com Cc: mike.travis@hpe.com Cc: russ.anderson@hpe.com Fixes: b059f801a937 ("x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGS") Link: https://lkml.kernel.org/r/20190905202346.GA26595@swahl-linuxSigned-off-by: NIngo Molnar <mingo@kernel.org> Cc: Andreas Smas <andreas@lonelycoder.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Paolo Bonzini 提交于
commit f7eea636c3d505fe6f1d1066234f1aaf7171b681 upstream. The implementation of vmread to memory is still incomplete, as it lacks the ability to do vmread to I/O memory just like vmptrst. Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Fuqian Huang 提交于
commit 541ab2aeb28251bf7135c7961f3a6080eebcc705 upstream. Emulation of VMPTRST can incorrectly inject a page fault when passed an operand that points to an MMIO address. The page fault will use uninitialized kernel stack memory as the CR2 and error code. The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR exit to userspace; however, it is not an easy fix, so for now just ensure that the error code and CR2 are zero. Signed-off-by: NFuqian Huang <huangfq.daxian@gmail.com> Cc: stable@vger.kernel.org [add comment] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 16 9月, 2019 2 次提交
-
-
由 Wanpeng Li 提交于
[ Upstream commit 4d763b168e9c5c366b05812c7bba7662e5ea3669 ] Raise #GP when guest read/write IA32_XSS, but the CPUID bits say that it shouldn't exist. Fixes: 20300099 (kvm: vmx: add MSR logic for XSAVES) Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Reported-by: NTao Xu <tao3.xu@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Sean Christopherson 提交于
[ Upstream commit beb8d93b3e423043e079ef3dda19dad7b28467a8 ] A previous fix to prevent KVM from consuming stale VMCS state after a failed VM-Entry inadvertantly blocked KVM's handling of machine checks that occur during VM-Entry. Per Intel's SDM, a #MC during VM-Entry is handled in one of three ways, depending on when the #MC is recognoized. As it pertains to this bug fix, the third case explicitly states EXIT_REASON_MCE_DURING_VMENTRY is handled like any other VM-Exit during VM-Entry, i.e. sets bit 31 to indicate the VM-Entry failed. If a machine-check event occurs during a VM entry, one of the following occurs: - The machine-check event is handled as if it occurred before the VM entry: ... - The machine-check event is handled after VM entry completes: ... - A VM-entry failure occurs as described in Section 26.7. The basic exit reason is 41, for "VM-entry failure due to machine-check event". Explicitly handle EXIT_REASON_MCE_DURING_VMENTRY as a one-off case in vmx_vcpu_run() instead of binning it into vmx_complete_atomic_exit(). Doing so allows vmx_vcpu_run() to handle VMX_EXIT_REASONS_FAILED_VMENTRY in a sane fashion and also simplifies vmx_complete_atomic_exit() since VMCS.VM_EXIT_INTR_INFO is guaranteed to be fresh. Fixes: b060ca3b ("kvm: vmx: Handle VMLAUNCH/VMRESUME failure properly") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-