- 13 11月, 2015 1 次提交
-
-
由 Dan Williams 提交于
Rather than punt on the numa node for these e820 ranges try to find a better answer with memory_add_physaddr_to_nid() when it is available. Cc: <stable@vger.kernel.org> Reported-by: NBoaz Harrosh <boaz@plexistor.com> Tested-by: NBoaz Harrosh <boaz@plexistor.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 29 8月, 2015 1 次提交
-
-
由 Dan Williams 提交于
The expectation is that the legacy / non-standard pmem discovery method (e820 type-12) will only ever be used to describe small quantities of persistent memory. Larger capacities will be described via the ACPI NFIT. When "allocate struct page from pmem" support is added this default policy can be overridden by assigning a legacy pmem namespace to a pfn device, however this would be only be necessary if a platform used the legacy mechanism to define a very large range. Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 19 8月, 2015 1 次提交
-
-
由 Dan Williams 提交于
We currently register a platform device for e820 type-12 memory and register a nvdimm bus beneath it. Registering the platform device triggers the device-core machinery to probe for a driver, but that search currently comes up empty. Building the nvdimm-bus registration into the e820_pmem platform device registration in this way forces libnvdimm to be built-in. Instead, convert the built-in portion of CONFIG_X86_PMEM_LEGACY to simply register a platform device and move the rest of the logic to the driver for e820_pmem, for the following reasons: 1/ Letting e820_pmem support be a module allows building and testing libnvdimm.ko changes without rebooting 2/ All the normal policy around modules can be applied to e820_pmem (unbind to disable and/or blacklisting the module from loading by default) 3/ Moving the driver to a generic location and converting it to scan "iomem_resource" rather than "e820.map" means any other architecture can take advantage of this simple nvdimm resource discovery mechanism by registering a resource named "Persistent Memory (legacy)" Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 26 6月, 2015 1 次提交
-
-
由 Toshi Kani 提交于
ACPI NFIT table has System Physical Address Range Structure entries that describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is set in the flags. Change acpi_nfit_register_region() to map a proximity ID to its node ID, and set it to a new numa_node field of nd_region_desc, which is then conveyed to the nd_region device. The device core arranges for btt and namespace devices to inherit their node from their parent region. Signed-off-by: NToshi Kani <toshi.kani@hp.com> [djbw: move set_dev_node() from region.c to bus.c] Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 25 6月, 2015 1 次提交
-
-
由 Dan Williams 提交于
nd_pmem attaches to persistent memory regions and namespaces emitted by the libnvdimm subsystem, and, same as the original pmem driver, presents the system-physical-address range as a block device. The existing e820-type-12 to pmem setup is converted to an nvdimm_bus that emits an nd_namespace_io device. Note that the X in 'pmemX' is now derived from the parent region. This provides some stability to the pmem devices names from boot-to-boot. The minor numbers are also more predictable by passing 0 to alloc_disk(). Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Acked-by: NChristoph Hellwig <hch@lst.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 01 4月, 2015 1 次提交
-
-
由 Christoph Hellwig 提交于
Various recent BIOSes support NVDIMMs or ADR using a non-standard e820 memory type, and Intel supplied reference Linux code using this type to various vendors. Wire this e820 table type up to export platform devices for the pmem driver so that we can use it in Linux. Based on earlier work from: Dave Jiang <dave.jiang@intel.com> Dan Williams <dan.j.williams@intel.com> Includes fixes for NUMA regions from Boaz Harrosh. Tested-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Acked-by: NDan Williams <dan.j.williams@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-nvdimm@ml01.01.org Link: http://lkml.kernel.org/r/1427872339-6688-2-git-send-email-hch@lst.de [ Minor cleanups. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-