- 25 9月, 2008 40 次提交
-
-
由 Chris Mason 提交于
The btree defragger wasn't making forward progress because the new key wasn't being saved by the btrfs_search_forward function. This also disables the automatic btree defrag, it wasn't scaling well to huge filesystems. The auto-defrag needs to be done differently. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
The online btree defragger is simplified and rewritten to use standard btree searches instead of a walk up / down mechanism. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This creates one kthread for commits and one kthread for deleting old snapshots. All the work queues are removed. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This lowers the impact of snapshot deletion on the rest of the FS. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Allocations may need to read in block groups from the extent allocation tree, which will require a tree search and take locks on the extent allocation tree. But, those locks might already be held in other places, leading to deadlocks. Since the alloc_mutex serializes everything right now, it is safe to skip the btree locking while caching block groups. A better fix will be to either create a recursive lock or find a way to back off existing locks while caching block groups. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This allows us to delete an unlinked inode with dirty pages from the list instead of forcing commit to write these out before deleting the inode. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
One lock per btree block can make for significant congestion if everyone has to wait for IO at the high levels of the btree. This drops locks held by a path when doing reads during a tree search. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Extent alloctions are still protected by a large alloc_mutex. Objectid allocations are covered by a objectid mutex Other btree operations are protected by a lock on individual btree nodes Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
The allocation trees and the chunk trees are serialized via their own dedicated mutexes. This means allocation location is still not very fine grained. The main FS btree is protected by locks on each block in the btree. Locks are taken top / down, and as processing finishes on a given level of the tree, the lock is released after locking the lower level. The end result of a search is now a path where only the lowest level is locked. Releasing or freeing the path drops any locks held. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
* Force chunk allocation when find_free_extent has to do a full scan * Record the max key at the start of defrag so it doesn't run forever * Block groups might not be contiguous, make a forward search for the next block group in extent-tree.c * Get rid of extra checks for total fs size * Fix relocate_one_reference to avoid relocating the same file data block twice when referenced by an older transaction * Use the open device count when allocating chunks so that we don't try to allocate from devices that don't exist Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
When duplicate copies exist, writes are allowed to fail to one of those copies. This changeset includes a few changes that allow the FS to continue even when some IOs fail. It also adds verification of the parent generation number for btree blocks. This generation is stored in the pointer to a block, and it ensures that missed writes to are detected. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
balance level starts by trying to empty the middle block, and then pushes from the right to the middle. This might empty the right block and leave a small number of pointers in the middle. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This isn't required anymore because we don't reallocate blocks that have already been written in this transaction. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Block headers now store the chunk tree uuid Chunk items records the device uuid for each stripes Device extent items record better back refs to the chunk tree Block groups record better back refs to the chunk tree The chunk tree format has also changed. The objectid of BTRFS_CHUNK_ITEM_KEY used to be the logical offset of the chunk. Now it is a chunk tree id, with the logical offset being stored in the offset field of the key. This allows a single chunk tree to record multiple logical address spaces, upping the number of bytes indexed by a chunk tree from 2^64 to 2^128. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Before, metadata checksumming was done by the callers of read_tree_block, which would set EXTENT_CSUM bits in the extent tree to show that a given range of pages was already checksummed and didn't need to be verified again. But, those bits could go away via try_to_releasepage, and the end result was bogus checksum failures on pages that never left the cache. The new code validates checksums when the page is read. It is a little tricky because metadata blocks can span pages and a single read may end up going via multiple bios. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Checksums were only verified by btrfs_read_tree_block, which meant the functions to probe the page cache for blocks were not validating checksums. Normally this is fine because the buffers will only be in cache if they have already been validated. But, there is a window while the buffer is being read from disk where it could be up to date in the cache but not yet verified. This patch makes sure all buffers go through checksum verification before they are used. This is safer, and it prevents modification of buffers before they go through the csum code. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This allows detection of blocks that have already been written in the running transaction so they can be recowed instead of modified again. It is step one in trusting the transid field of the block pointers. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Yan 提交于
When freeing root block of a tree, btrfs_free_extent' parameter 'ref_generation' is from root block itseft. When freeing non-root block, 'ref_generation' is from its parent. so when converting a non-root block to root block, we must guarantee its generation is equal to its parent's generation. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This forces file data extents down the disk along with the metadata that references them. The current implementation is fairly simple, and just writes out all of the dirty pages in an inode before the commit. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
A number of workloads do not require copy on write data or checksumming. mount -o nodatasum to disable checksums and -o nodatacow to disable both copy on write and checksumming. In nodatacow mode, copy on write is still performed when a given extent is under snapshot. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Yan 提交于
The codes that fixup the right leaf and the codes that dirty the extnet buffer use the variable 'right_nritems' , both of them expect 'right_nritems' is the number of items in right leaf after the push. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-