1. 14 7月, 2012 3 次提交
    • A
      ->atomic_open() prototype change - pass int * instead of bool * · 47237687
      Al Viro 提交于
      ... and let finish_open() report having opened the file via that sucker.
      Next step: don't modify od->filp at all.
      
      [AV: FILE_CREATE was already used by cifs; Miklos' fix folded]
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      47237687
    • M
      vfs: add i_op->atomic_open() · d18e9008
      Miklos Szeredi 提交于
      Add a new inode operation which is called on the last component of an open.
      Using this the filesystem can look up, possibly create and open the file in one
      atomic operation.  If it cannot perform this (e.g. the file type turned out to
      be wrong) it may signal this by returning NULL instead of an open struct file
      pointer.
      
      i_op->atomic_open() is only called if the last component is negative or needs
      lookup.  Handling cached positive dentries here doesn't add much value: these
      can be opened using f_op->open().  If the cached file turns out to be invalid,
      the open can be retried, this time using ->atomic_open() with a fresh dentry.
      
      For now leave the old way of using open intents in lookup and revalidate in
      place.  This will be removed once all the users are converted.
      
      David Howells noticed that if ->atomic_open() opens the file but does not create
      it, handle_truncate() will be called on it even if it is not a regular file.
      Fix this by checking the file type in this case too.
      Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      d18e9008
    • A
      vfs: update documentation on ->i_dentry handling · 049b3c10
      Al Viro 提交于
      we used to need to clean it in RCU callback freeing an inode;
      in 3.2 that requirement went away.  Unfortunately, it hadn't
      been reflected in Documentation/filesystems/porting.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      049b3c10
  2. 02 6月, 2012 1 次提交
    • J
      fs: introduce inode operation ->update_time · c3b2da31
      Josef Bacik 提交于
      Btrfs has to make sure we have space to allocate new blocks in order to modify
      the inode, so updating time can fail.  We've gotten around this by having our
      own file_update_time but this is kind of a pain, and Christoph has indicated he
      would like to make xfs do something different with atime updates.  So introduce
      ->update_time, where we will deal with i_version an a/m/c time updates and
      indicate which changes need to be made.  The normal version just does what it
      has always done, updates the time and marks the inode dirty, and then
      filesystems can choose to do something different.
      
      I've gone through all of the users of file_update_time and made them check for
      errors with the exception of the fault code since it's complicated and I wasn't
      quite sure what to do there, also Jan is going to be pushing the file time
      updates into page_mkwrite for those who have it so that should satisfy btrfs and
      make it not a big deal to check the file_update_time() return code in the
      generic fault path. Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      c3b2da31
  3. 01 6月, 2012 2 次提交
  4. 30 5月, 2012 2 次提交
  5. 25 5月, 2012 1 次提交
  6. 16 5月, 2012 1 次提交
    • P
      tokenring: delete all remaining driver support · ee446fd5
      Paul Gortmaker 提交于
      This represents the mass deletion of the of the tokenring support.
      
      It gets rid of:
        - the net/tr.c which the drivers depended on
        - the drivers/net component
        - the Kbuild infrastructure around it
        - any tokenring related CONFIG_ settings in any defconfigs
        - the tokenring headers in the include/linux dir
        - the firmware associated with the tokenring drivers.
        - any associated token ring documentation.
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      ee446fd5
  7. 10 5月, 2012 2 次提交
  8. 06 5月, 2012 1 次提交
  9. 16 4月, 2012 1 次提交
  10. 11 4月, 2012 1 次提交
  11. 09 4月, 2012 1 次提交
  12. 22 3月, 2012 1 次提交
    • S
      procfs: mark thread stack correctly in proc/<pid>/maps · b7643757
      Siddhesh Poyarekar 提交于
      Stack for a new thread is mapped by userspace code and passed via
      sys_clone.  This memory is currently seen as anonymous in
      /proc/<pid>/maps, which makes it difficult to ascertain which mappings
      are being used for thread stacks.  This patch uses the individual task
      stack pointers to determine which vmas are actually thread stacks.
      
      For a multithreaded program like the following:
      
      	#include <pthread.h>
      
      	void *thread_main(void *foo)
      	{
      		while(1);
      	}
      
      	int main()
      	{
      		pthread_t t;
      		pthread_create(&t, NULL, thread_main, NULL);
      		pthread_join(t, NULL);
      	}
      
      proc/PID/maps looks like the following:
      
          00400000-00401000 r-xp 00000000 fd:0a 3671804                            /home/siddhesh/a.out
          00600000-00601000 rw-p 00000000 fd:0a 3671804                            /home/siddhesh/a.out
          019ef000-01a10000 rw-p 00000000 00:00 0                                  [heap]
          7f8a44491000-7f8a44492000 ---p 00000000 00:00 0
          7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0
          7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0
          7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0
          7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0
          7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0
          7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0
          7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
          7fff627ff000-7fff62800000 r-xp 00000000 00:00 0                          [vdso]
          ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
      
      Here, one could guess that 7f8a44492000-7f8a44c92000 is a stack since
      the earlier vma that has no permissions (7f8a44e3d000-7f8a4503d000) but
      that is not always a reliable way to find out which vma is a thread
      stack.  Also, /proc/PID/maps and /proc/PID/task/TID/maps has the same
      content.
      
      With this patch in place, /proc/PID/task/TID/maps are treated as 'maps
      as the task would see it' and hence, only the vma that that task uses as
      stack is marked as [stack].  All other 'stack' vmas are marked as
      anonymous memory.  /proc/PID/maps acts as a thread group level view,
      where all thread stack vmas are marked as [stack:TID] where TID is the
      process ID of the task that uses that vma as stack, while the process
      stack is marked as [stack].
      
      So /proc/PID/maps will look like this:
      
          00400000-00401000 r-xp 00000000 fd:0a 3671804                            /home/siddhesh/a.out
          00600000-00601000 rw-p 00000000 fd:0a 3671804                            /home/siddhesh/a.out
          019ef000-01a10000 rw-p 00000000 00:00 0                                  [heap]
          7f8a44491000-7f8a44492000 ---p 00000000 00:00 0
          7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack:1442]
          7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0
          7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0
          7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0
          7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0
          7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0
          7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
          7fff627ff000-7fff62800000 r-xp 00000000 00:00 0                          [vdso]
          ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
      
      Thus marking all vmas that are used as stacks by the threads in the
      thread group along with the process stack.  The task level maps will
      however like this:
      
          00400000-00401000 r-xp 00000000 fd:0a 3671804                            /home/siddhesh/a.out
          00600000-00601000 rw-p 00000000 fd:0a 3671804                            /home/siddhesh/a.out
          019ef000-01a10000 rw-p 00000000 00:00 0                                  [heap]
          7f8a44491000-7f8a44492000 ---p 00000000 00:00 0
          7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack]
          7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482                    /lib64/libc-2.14.90.so
          7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0
          7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
          7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0
          7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0
          7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0
          7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348                    /lib64/ld-2.14.90.so
          7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0
          7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0
          7fff627ff000-7fff62800000 r-xp 00000000 00:00 0                          [vdso]
          ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
      
      where only the vma that is being used as a stack by *that* task is
      marked as [stack].
      
      Analogous changes have been made to /proc/PID/smaps,
      /proc/PID/numa_maps, /proc/PID/task/TID/smaps and
      /proc/PID/task/TID/numa_maps. Relevant snippets from smaps and
      numa_maps:
      
          [siddhesh@localhost ~ ]$ pgrep a.out
          1441
          [siddhesh@localhost ~ ]$ cat /proc/1441/smaps | grep "\[stack"
          7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack:1442]
          7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
          [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/smaps | grep "\[stack"
          7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack]
          [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/smaps | grep "\[stack"
          7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
          [siddhesh@localhost ~ ]$ cat /proc/1441/numa_maps | grep "stack"
          7f8a44492000 default stack:1442 anon=2 dirty=2 N0=2
          7fff6273a000 default stack anon=3 dirty=3 N0=3
          [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/numa_maps | grep "stack"
          7f8a44492000 default stack anon=2 dirty=2 N0=2
          [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/numa_maps | grep "stack"
          7fff6273a000 default stack anon=3 dirty=3 N0=3
      
      [akpm@linux-foundation.org: checkpatch fixes]
      [akpm@linux-foundation.org: fix build]
      Signed-off-by: NSiddhesh Poyarekar <siddhesh.poyarekar@gmail.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Jamie Lokier <jamie@shareable.org>
      Cc: Mike Frysinger <vapier@gentoo.org>
      Cc: Alexey Dobriyan <adobriyan@gmail.com>
      Cc: Matt Mackall <mpm@selenic.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b7643757
  13. 21 3月, 2012 4 次提交
    • S
      pnfs-obj: autologin: Add support for protocol autologin · 18d98f6c
      Sachin Bhamare 提交于
      The pnfs-objects protocol mandates that we autologin into devices not
      present in the system, according to information specified in the
      get_device_info returned from the server.
      
      The Protocol specifies two login hints.
      1. An IP address:port combination
      2. A string URI which is constructed as a URL with a protocol prefix
         followed by :// and a string as address. For each  protocol prefix
         the string-address format might be different.
      
      We only support the second option. The first option is just redundant
      to the second one.
      NOTE: The Kernel part of autologin does not parse the URI string. It
      just channels it to a user-mode script. So any new login protocols should
      only update the user-mode script which is a part of the nfs-utils package,
      but the Kernel need not change.
      
      We implement the autologin by using the call_usermodehelper() API.
      (Thanks to Steve Dickson <steved@redhat.com> for pointing it out)
      So there is no running daemon needed, and/or special setup.
      
      We Add the osd_login_prog Kernel module parameters which defaults to:
      	/sbin/osd_login
      
      Kernel try's to upcall the program specified in osd_login_prog. If the file is
      not found or the execution fails Kernel will disable any farther upcalls, by
      zeroing out  osd_login_prog, Until Admin re-enables it by setting the
      osd_login_prog parameter to a proper program.
      
      Also add text about the osd_login program command line API to:
      	Documentation/filesystems/nfs/pnfs.txt
      and documentation of the new  osd_login_prog  module parameter to:
      	Documentation/kernel-parameters.txt
      
      TODO: Add timeout option in the case osd_login program gets
                    stuck
      Signed-off-by: NSachin Bhamare <sbhamare@panasas.com>
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
      18d98f6c
    • A
      debugfs-related mode_t whack-a-mole · 88187398
      Al Viro 提交于
      all of those should be umode_t...
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      88187398
    • K
      fs: initial qnx6fs addition · 5d026c72
      Kai Bankett 提交于
      Adds support for qnx6fs readonly support to the linux kernel.
      
      * Mount option
        The option mmi_fs can be used to mount Harman Becker/Audi MMI 3G
        HDD qnx6fs filesystems.
      
      * Documentation
        A high level filesystem stucture description can be found in the
        Documentation/filesystems directory. (qnx6.txt)
      
      * Additional features
        - Active (stable) superblock selection
        - Superblock checksum check (enforced)
        - Supports mount of qnx6 filesystems with to host different endianess
        - Automatic endianess detection
        - Longfilename support (with non-enfocing crc check)
        - All blocksizes (512, 1024, 2048 and 4096 supported)
      Signed-off-by: NKai Bankett <chaosman@ontika.net>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      5d026c72
    • A
      vfs: d_alloc_root() gone · 32991ab3
      Al Viro 提交于
      all callers converted to d_make_root() by now
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      32991ab3
  14. 07 3月, 2012 1 次提交
  15. 21 2月, 2012 3 次提交
  16. 20 2月, 2012 1 次提交
    • D
      Wrap accesses to the fd_sets in struct fdtable · 1dce27c5
      David Howells 提交于
      Wrap accesses to the fd_sets in struct fdtable (for recording open files and
      close-on-exec flags) so that we can move away from using fd_sets since we
      abuse the fd_set structs by not allocating the full-sized structure under
      normal circumstances and by non-core code looking at the internals of the
      fd_sets.
      
      The first abuse means that use of FD_ZERO() on these fd_sets is not permitted,
      since that cannot be told about their abnormal lengths.
      
      This introduces six wrapper functions for setting, clearing and testing
      close-on-exec flags and fd-is-open flags:
      
      	void __set_close_on_exec(int fd, struct fdtable *fdt);
      	void __clear_close_on_exec(int fd, struct fdtable *fdt);
      	bool close_on_exec(int fd, const struct fdtable *fdt);
      	void __set_open_fd(int fd, struct fdtable *fdt);
      	void __clear_open_fd(int fd, struct fdtable *fdt);
      	bool fd_is_open(int fd, const struct fdtable *fdt);
      
      Note that I've prepended '__' to the names of the set/clear functions because
      they require the caller to hold a lock to use them.
      
      Note also that I haven't added wrappers for looking behind the scenes at the
      the array.  Possibly that should exist too.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Link: http://lkml.kernel.org/r/20120216174942.23314.1364.stgit@warthog.procyon.org.ukSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      1dce27c5
  17. 07 2月, 2012 1 次提交
  18. 27 1月, 2012 1 次提交
    • L
      debugfs: add mode, uid and gid options · d6e48686
      Ludwig Nussel 提交于
      Cautious admins may want to restrict access to debugfs. Currently a
      manual chown/chmod e.g. in an init script is needed to achieve that.
      Distributions that want to make the mount options configurable need
      to add extra config files. By allowing to set the root inode's uid,
      gid and mode via mount options no such hacks are needed anymore.
      Instead configuration becomes straight forward via fstab.
      Signed-off-by: NLudwig Nussel <ludwig.nussel@suse.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      d6e48686
  19. 13 1月, 2012 2 次提交
  20. 11 1月, 2012 1 次提交
    • V
      procfs: add hidepid= and gid= mount options · 0499680a
      Vasiliy Kulikov 提交于
      Add support for mount options to restrict access to /proc/PID/
      directories.  The default backward-compatible "relaxed" behaviour is left
      untouched.
      
      The first mount option is called "hidepid" and its value defines how much
      info about processes we want to be available for non-owners:
      
      hidepid=0 (default) means the old behavior - anybody may read all
      world-readable /proc/PID/* files.
      
      hidepid=1 means users may not access any /proc/<pid>/ directories, but
      their own.  Sensitive files like cmdline, sched*, status are now protected
      against other users.  As permission checking done in proc_pid_permission()
      and files' permissions are left untouched, programs expecting specific
      files' modes are not confused.
      
      hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
      users.  It doesn't mean that it hides whether a process exists (it can be
      learned by other means, e.g.  by kill -0 $PID), but it hides process' euid
      and egid.  It compicates intruder's task of gathering info about running
      processes, whether some daemon runs with elevated privileges, whether
      another user runs some sensitive program, whether other users run any
      program at all, etc.
      
      gid=XXX defines a group that will be able to gather all processes' info
      (as in hidepid=0 mode).  This group should be used instead of putting
      nonroot user in sudoers file or something.  However, untrusted users (like
      daemons, etc.) which are not supposed to monitor the tasks in the whole
      system should not be added to the group.
      
      hidepid=1 or higher is designed to restrict access to procfs files, which
      might reveal some sensitive private information like precise keystrokes
      timings:
      
      http://www.openwall.com/lists/oss-security/2011/11/05/3
      
      hidepid=1/2 doesn't break monitoring userspace tools.  ps, top, pgrep, and
      conky gracefully handle EPERM/ENOENT and behave as if the current user is
      the only user running processes.  pstree shows the process subtree which
      contains "pstree" process.
      
      Note: the patch doesn't deal with setuid/setgid issues of keeping
      preopened descriptors of procfs files (like
      https://lkml.org/lkml/2011/2/7/368).  We rely on that the leaked
      information like the scheduling counters of setuid apps doesn't threaten
      anybody's privacy - only the user started the setuid program may read the
      counters.
      Signed-off-by: NVasiliy Kulikov <segoon@openwall.com>
      Cc: Alexey Dobriyan <adobriyan@gmail.com>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Randy Dunlap <rdunlap@xenotime.net>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Greg KH <greg@kroah.com>
      Cc: Theodore Tso <tytso@MIT.EDU>
      Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
      Cc: James Morris <jmorris@namei.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0499680a
  21. 07 1月, 2012 1 次提交
  22. 05 1月, 2012 1 次提交
    • Y
      ext4: add new online resize interface · 19c5246d
      Yongqiang Yang 提交于
      This patch adds new online resize interface, whose input argument is a
      64-bit integer indicating how many blocks there are in the resized fs.
      
      In new resize impelmentation, all work like allocating group tables
      are done by kernel side, so the new resize interface can support
      flex_bg feature and prepares ground for suppoting resize with features
      like bigalloc and exclude bitmap. Besides these, user-space tools just
      passes in the new number of blocks.
      
      We delay initializing the bitmaps and inode tables of added groups if
      possible and add multi groups (a flex groups) each time, so new resize
      is very fast like mkfs.
      Signed-off-by: NYongqiang Yang <xiaoqiangnk@gmail.com>
      Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
      19c5246d
  23. 04 1月, 2012 6 次提交
  24. 30 12月, 2011 1 次提交