1. 13 12月, 2014 1 次提交
  2. 22 9月, 2014 1 次提交
  3. 10 9月, 2014 2 次提交
  4. 25 8月, 2014 1 次提交
  5. 29 7月, 2014 1 次提交
  6. 28 7月, 2014 4 次提交
    • A
      KVM: Allow KVM_CHECK_EXTENSION on the vm fd · 92b591a4
      Alexander Graf 提交于
      The KVM_CHECK_EXTENSION is only available on the kvm fd today. Unfortunately
      on PPC some of the capabilities change depending on the way a VM was created.
      
      So instead we need a way to expose capabilities as VM ioctl, so that we can
      see which VM type we're using (HV or PR). To enable this, add the
      KVM_CHECK_EXTENSION ioctl to our vm ioctl portfolio.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      Acked-by: NPaolo Bonzini <pbonzini@redhat.com>
      92b591a4
    • A
      KVM: PPC: Book3S: Fix LPCR one_reg interface · a0840240
      Alexey Kardashevskiy 提交于
      Unfortunately, the LPCR got defined as a 32-bit register in the
      one_reg interface.  This is unfortunate because KVM allows userspace
      to control the DPFD (default prefetch depth) field, which is in the
      upper 32 bits.  The result is that DPFD always get set to 0, which
      reduces performance in the guest.
      
      We can't just change KVM_REG_PPC_LPCR to be a 64-bit register ID,
      since that would break existing userspace binaries.  Instead we define
      a new KVM_REG_PPC_LPCR_64 id which is 64-bit.  Userspace can still use
      the old KVM_REG_PPC_LPCR id, but it now only modifies those fields in
      the bottom 32 bits that userspace can modify (ILE, TC and AIL).
      If userspace uses the new KVM_REG_PPC_LPCR_64 id, it can modify DPFD
      as well.
      Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Cc: stable@vger.kernel.org
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a0840240
    • P
      KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled · ae2113a4
      Paul Mackerras 提交于
      This adds code to check that when the KVM_CAP_PPC_ENABLE_HCALL
      capability is used to enable or disable in-kernel handling of an
      hcall, that the hcall is actually implemented by the kernel.
      If not an EINVAL error is returned.
      
      This also checks the default-enabled list of hcalls and prints a
      warning if any hcall there is not actually implemented.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      ae2113a4
    • P
      KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling · 699a0ea0
      Paul Mackerras 提交于
      This provides a way for userspace controls which sPAPR hcalls get
      handled in the kernel.  Each hcall can be individually enabled or
      disabled for in-kernel handling, except for H_RTAS.  The exception
      for H_RTAS is because userspace can already control whether
      individual RTAS functions are handled in-kernel or not via the
      KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
      H_RTAS is out of the normal sequence of hcall numbers.
      
      Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
      KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
      The args field of the struct kvm_enable_cap specifies the hcall number
      in args[0] and the enable/disable flag in args[1]; 0 means disable
      in-kernel handling (so that the hcall will always cause an exit to
      userspace) and 1 means enable.  Enabling or disabling in-kernel
      handling of an hcall is effective across the whole VM.
      
      The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
      on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
      capability advertises that this ability exists.
      
      When a VM is created, an initial set of hcalls are enabled for
      in-kernel handling.  The set that is enabled is the set that have
      an in-kernel implementation at this point.  Any new hcall
      implementations from this point onwards should not be added to the
      default set without a good reason.
      
      No distinction is made between real-mode and virtual-mode hcall
      implementations; the one setting controls them both.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      699a0ea0
  7. 21 7月, 2014 2 次提交
  8. 10 7月, 2014 5 次提交
  9. 30 5月, 2014 2 次提交
  10. 15 5月, 2014 1 次提交
  11. 06 5月, 2014 1 次提交
  12. 05 5月, 2014 1 次提交
  13. 30 4月, 2014 2 次提交
  14. 22 4月, 2014 1 次提交
  15. 28 3月, 2014 1 次提交
    • C
      KVM: Specify byte order for KVM_EXIT_MMIO · 6acdb160
      Christoffer Dall 提交于
      The KVM API documentation is not clear about the semantics of the data
      field on the mmio struct on the kvm_run struct.
      
      This has become problematic when supporting ARM guests on big-endian
      host systems with guests of both endianness types, because it is unclear
      how the data should be exported to user space.
      
      This should not break with existing implementations as all supported
      existing implementations of known user space applications (QEMU and
      kvmtools for virtio) only support default endianness of the
      architectures on the host side.
      
      Cc: Marc Zyngier <marc.zyngier@arm.com>
      Cc: Peter Maydell <peter.maydell@linaro.org>
      Cc: Alexander Graf <agraf@suse.de>
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      6acdb160
  16. 21 3月, 2014 3 次提交
  17. 13 3月, 2014 1 次提交
    • G
      kvm: x86: ignore ioapic polarity · 100943c5
      Gabriel L. Somlo 提交于
      Both QEMU and KVM have already accumulated a significant number of
      optimizations based on the hard-coded assumption that ioapic polarity
      will always use the ActiveHigh convention, where the logical and
      physical states of level-triggered irq lines always match (i.e.,
      active(asserted) == high == 1, inactive == low == 0). QEMU guests
      are expected to follow directions given via ACPI and configure the
      ioapic with polarity 0 (ActiveHigh). However, even when misbehaving
      guests (e.g. OS X <= 10.9) set the ioapic polarity to 1 (ActiveLow),
      QEMU will still use the ActiveHigh signaling convention when
      interfacing with KVM.
      
      This patch modifies KVM to completely ignore ioapic polarity as set by
      the guest OS, enabling misbehaving guests to work alongside those which
      comply with the ActiveHigh polarity specified by QEMU's ACPI tables.
      Signed-off-by: NMichael S. Tsirkin <mst@redhat.com>
      Signed-off-by: NGabriel L. Somlo <somlo@cmu.edu>
      [Move documentation to KVM_IRQ_LINE, add ia64. - Paolo]
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      100943c5
  18. 27 1月, 2014 1 次提交
    • P
      KVM: PPC: Book3S HV: Add support for DABRX register on POWER7 · 8563bf52
      Paul Mackerras 提交于
      The DABRX (DABR extension) register on POWER7 processors provides finer
      control over which accesses cause a data breakpoint interrupt.  It
      contains 3 bits which indicate whether to enable accesses in user,
      kernel and hypervisor modes respectively to cause data breakpoint
      interrupts, plus one bit that enables both real mode and virtual mode
      accesses to cause interrupts.  Currently, KVM sets DABRX to allow
      both kernel and user accesses to cause interrupts while in the guest.
      
      This adds support for the guest to specify other values for DABRX.
      PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
      and DABRX with one call.  This adds a real-mode implementation of
      H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
      implementation.  To support this, we add a per-vcpu field to store the
      DABRX value plus code to get and set it via the ONE_REG interface.
      
      For Linux guests to use this new hcall, userspace needs to add
      "hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
      property in the device tree.  If userspace does this and then migrates
      the guest to a host where the kernel doesn't include this patch, then
      userspace will need to implement H_SET_XDABR by writing the specified
      DABR value to the DABR using the ONE_REG interface.  In that case, the
      old kernel will set DABRX to DABRX_USER | DABRX_KERNEL.  That should
      still work correctly, at least for Linux guests, since Linux guests
      cope with getting data breakpoint interrupts in modes that weren't
      requested by just ignoring the interrupt, and Linux guests never set
      DABRX_BTI.
      
      The other thing this does is to make H_SET_DABR and H_SET_XDABR work
      on POWER8, which has the DAWR and DAWRX instead of DABR/X.  Guests that
      know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
      guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
      For them, this adds the logic to convert DABR/X values into DAWR/X values
      on POWER8.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      8563bf52
  19. 01 1月, 2014 1 次提交
  20. 22 12月, 2013 1 次提交
  21. 18 12月, 2013 1 次提交
  22. 31 10月, 2013 1 次提交
    • B
      kvm: Add KVM_GET_EMULATED_CPUID · 9c15bb1d
      Borislav Petkov 提交于
      Add a kvm ioctl which states which system functionality kvm emulates.
      The format used is that of CPUID and we return the corresponding CPUID
      bits set for which we do emulate functionality.
      
      Make sure ->padding is being passed on clean from userspace so that we
      can use it for something in the future, after the ioctl gets cast in
      stone.
      
      s/kvm_dev_ioctl_get_supported_cpuid/kvm_dev_ioctl_get_cpuid/ while at
      it.
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      9c15bb1d
  23. 17 10月, 2013 5 次提交
    • P
      KVM: PPC: Book3S HV: Support POWER6 compatibility mode on POWER7 · 388cc6e1
      Paul Mackerras 提交于
      This enables us to use the Processor Compatibility Register (PCR) on
      POWER7 to put the processor into architecture 2.05 compatibility mode
      when running a guest.  In this mode the new instructions and registers
      that were introduced on POWER7 are disabled in user mode.  This
      includes all the VSX facilities plus several other instructions such
      as ldbrx, stdbrx, popcntw, popcntd, etc.
      
      To select this mode, we have a new register accessible through the
      set/get_one_reg interface, called KVM_REG_PPC_ARCH_COMPAT.  Setting
      this to zero gives the full set of capabilities of the processor.
      Setting it to one of the "logical" PVR values defined in PAPR puts
      the vcpu into the compatibility mode for the corresponding
      architecture level.  The supported values are:
      
      0x0f000002	Architecture 2.05 (POWER6)
      0x0f000003	Architecture 2.06 (POWER7)
      0x0f100003	Architecture 2.06+ (POWER7+)
      
      Since the PCR is per-core, the architecture compatibility level and
      the corresponding PCR value are stored in the struct kvmppc_vcore, and
      are therefore shared between all vcpus in a virtual core.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: squash in fix to add missing break statements and documentation]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      388cc6e1
    • P
      KVM: PPC: Book3S HV: Add support for guest Program Priority Register · 4b8473c9
      Paul Mackerras 提交于
      POWER7 and later IBM server processors have a register called the
      Program Priority Register (PPR), which controls the priority of
      each hardware CPU SMT thread, and affects how fast it runs compared
      to other SMT threads.  This priority can be controlled by writing to
      the PPR or by use of a set of instructions of the form or rN,rN,rN
      which are otherwise no-ops but have been defined to set the priority
      to particular levels.
      
      This adds code to context switch the PPR when entering and exiting
      guests and to make the PPR value accessible through the SET/GET_ONE_REG
      interface.  When entering the guest, we set the PPR as late as
      possible, because if we are setting a low thread priority it will
      make the code run slowly from that point on.  Similarly, the
      first-level interrupt handlers save the PPR value in the PACA very
      early on, and set the thread priority to the medium level, so that
      the interrupt handling code runs at a reasonable speed.
      Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      4b8473c9
    • P
      KVM: PPC: Book3S HV: Store LPCR value for each virtual core · a0144e2a
      Paul Mackerras 提交于
      This adds the ability to have a separate LPCR (Logical Partitioning
      Control Register) value relating to a guest for each virtual core,
      rather than only having a single value for the whole VM.  This
      corresponds to what real POWER hardware does, where there is a LPCR
      per CPU thread but most of the fields are required to have the same
      value on all active threads in a core.
      
      The per-virtual-core LPCR can be read and written using the
      GET/SET_ONE_REG interface.  Userspace can can only modify the
      following fields of the LPCR value:
      
      DPFD	Default prefetch depth
      ILE	Interrupt little-endian
      TC	Translation control (secondary HPT hash group search disable)
      
      We still maintain a per-VM default LPCR value in kvm->arch.lpcr, which
      contains bits relating to memory management, i.e. the Virtualized
      Partition Memory (VPM) bits and the bits relating to guest real mode.
      When this default value is updated, the update needs to be propagated
      to the per-vcore values, so we add a kvmppc_update_lpcr() helper to do
      that.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix whitespace]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a0144e2a
    • P
      KVM: PPC: Book3S: Add GET/SET_ONE_REG interface for VRSAVE · c0867fd5
      Paul Mackerras 提交于
      The VRSAVE register value for a vcpu is accessible through the
      GET/SET_SREGS interface for Book E processors, but not for Book 3S
      processors.  In order to make this accessible for Book 3S processors,
      this adds a new register identifier for GET/SET_ONE_REG, and adds
      the code to implement it.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      c0867fd5
    • P
      KVM: PPC: Book3S HV: Implement timebase offset for guests · 93b0f4dc
      Paul Mackerras 提交于
      This allows guests to have a different timebase origin from the host.
      This is needed for migration, where a guest can migrate from one host
      to another and the two hosts might have a different timebase origin.
      However, the timebase seen by the guest must not go backwards, and
      should go forwards only by a small amount corresponding to the time
      taken for the migration.
      
      Therefore this provides a new per-vcpu value accessed via the one_reg
      interface using the new KVM_REG_PPC_TB_OFFSET identifier.  This value
      defaults to 0 and is not modified by KVM.  On entering the guest, this
      value is added onto the timebase, and on exiting the guest, it is
      subtracted from the timebase.
      
      This is only supported for recent POWER hardware which has the TBU40
      (timebase upper 40 bits) register.  Writing to the TBU40 register only
      alters the upper 40 bits of the timebase, leaving the lower 24 bits
      unchanged.  This provides a way to modify the timebase for guest
      migration without disturbing the synchronization of the timebase
      registers across CPU cores.  The kernel rounds up the value given
      to a multiple of 2^24.
      
      Timebase values stored in KVM structures (struct kvm_vcpu, struct
      kvmppc_vcore, etc.) are stored as host timebase values.  The timebase
      values in the dispatch trace log need to be guest timebase values,
      however, since that is read directly by the guest.  This moves the
      setting of vcpu->arch.dec_expires on guest exit to a point after we
      have restored the host timebase so that vcpu->arch.dec_expires is a
      host timebase value.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      93b0f4dc