1. 16 1月, 2016 1 次提交
  2. 15 1月, 2016 1 次提交
    • K
      mm: rework virtual memory accounting · 84638335
      Konstantin Khlebnikov 提交于
      When inspecting a vague code inside prctl(PR_SET_MM_MEM) call (which
      testing the RLIMIT_DATA value to figure out if we're allowed to assign
      new @start_brk, @brk, @start_data, @end_data from mm_struct) it's been
      commited that RLIMIT_DATA in a form it's implemented now doesn't do
      anything useful because most of user-space libraries use mmap() syscall
      for dynamic memory allocations.
      
      Linus suggested to convert RLIMIT_DATA rlimit into something suitable
      for anonymous memory accounting.  But in this patch we go further, and
      the changes are bundled together as:
      
       * keep vma counting if CONFIG_PROC_FS=n, will be used for limits
       * replace mm->shared_vm with better defined mm->data_vm
       * account anonymous executable areas as executable
       * account file-backed growsdown/up areas as stack
       * drop struct file* argument from vm_stat_account
       * enforce RLIMIT_DATA for size of data areas
      
      This way code looks cleaner: now code/stack/data classification depends
      only on vm_flags state:
      
       VM_EXEC & ~VM_WRITE            -> code  (VmExe + VmLib in proc)
       VM_GROWSUP | VM_GROWSDOWN      -> stack (VmStk)
       VM_WRITE & ~VM_SHARED & !stack -> data  (VmData)
      
      The rest (VmSize - VmData - VmStk - VmExe - VmLib) could be called
      "shared", but that might be strange beast like readonly-private or VM_IO
      area.
      
       - RLIMIT_AS            limits whole address space "VmSize"
       - RLIMIT_STACK         limits stack "VmStk" (but each vma individually)
       - RLIMIT_DATA          now limits "VmData"
      Signed-off-by: NKonstantin Khlebnikov <koct9i@gmail.com>
      Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
      Cc: Vegard Nossum <vegard.nossum@oracle.com>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Cc: Willy Tarreau <w@1wt.eu>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Kees Cook <keescook@google.com>
      Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
      Cc: Pavel Emelyanov <xemul@virtuozzo.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      84638335
  3. 07 11月, 2015 1 次提交
    • K
      mm: make compound_head() robust · 1d798ca3
      Kirill A. Shutemov 提交于
      Hugh has pointed that compound_head() call can be unsafe in some
      context. There's one example:
      
      	CPU0					CPU1
      
      isolate_migratepages_block()
        page_count()
          compound_head()
            !!PageTail() == true
      					put_page()
      					  tail->first_page = NULL
            head = tail->first_page
      					alloc_pages(__GFP_COMP)
      					   prep_compound_page()
      					     tail->first_page = head
      					     __SetPageTail(p);
            !!PageTail() == true
          <head == NULL dereferencing>
      
      The race is pure theoretical. I don't it's possible to trigger it in
      practice. But who knows.
      
      We can fix the race by changing how encode PageTail() and compound_head()
      within struct page to be able to update them in one shot.
      
      The patch introduces page->compound_head into third double word block in
      front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
      the rest bits are pointer to head page if bit zero is set.
      
      The patch moves page->pmd_huge_pte out of word, just in case if an
      architecture defines pgtable_t into something what can have the bit 0
      set.
      
      hugetlb_cgroup uses page->lru.next in the second tail page to store
      pointer struct hugetlb_cgroup. The patch switch it to use page->private
      in the second tail page instead. The space is free since ->first_page is
      removed from the union.
      
      The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
      limitation, since there's now space in first tail page to store struct
      hugetlb_cgroup pointer. But that's out of scope of the patch.
      
      That means page->compound_head shares storage space with:
      
       - page->lru.next;
       - page->next;
       - page->rcu_head.next;
      
      That's too long list to be absolutely sure, but looks like nobody uses
      bit 0 of the word.
      
      page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
      call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
      call_rcu_lazy() is not allowed as it makes use of the bit and we can
      get false positive PageTail().
      
      [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1d798ca3
  4. 06 11月, 2015 1 次提交
    • E
      mm: introduce VM_LOCKONFAULT · de60f5f1
      Eric B Munson 提交于
      The cost of faulting in all memory to be locked can be very high when
      working with large mappings.  If only portions of the mapping will be used
      this can incur a high penalty for locking.
      
      For the example of a large file, this is the usage pattern for a large
      statical language model (probably applies to other statical or graphical
      models as well).  For the security example, any application transacting in
      data that cannot be swapped out (credit card data, medical records, etc).
      
      This patch introduces the ability to request that pages are not
      pre-faulted, but are placed on the unevictable LRU when they are finally
      faulted in.  The VM_LOCKONFAULT flag will be used together with VM_LOCKED
      and has no effect when set without VM_LOCKED.  Setting the VM_LOCKONFAULT
      flag for a VMA will cause pages faulted into that VMA to be added to the
      unevictable LRU when they are faulted or if they are already present, but
      will not cause any missing pages to be faulted in.
      
      Exposing this new lock state means that we cannot overload the meaning of
      the FOLL_POPULATE flag any longer.  Prior to this patch it was used to
      mean that the VMA for a fault was locked.  This means we need the new
      FOLL_MLOCK flag to communicate the locked state of a VMA.  FOLL_POPULATE
      will now only control if the VMA should be populated and in the case of
      VM_LOCKONFAULT, it will not be set.
      Signed-off-by: NEric B Munson <emunson@akamai.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Guenter Roeck <linux@roeck-us.net>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Shuah Khan <shuahkh@osg.samsung.com>
      Cc: Stephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      de60f5f1
  5. 11 9月, 2015 1 次提交
    • V
      mm: introduce idle page tracking · 33c3fc71
      Vladimir Davydov 提交于
      Knowing the portion of memory that is not used by a certain application or
      memory cgroup (idle memory) can be useful for partitioning the system
      efficiently, e.g.  by setting memory cgroup limits appropriately.
      Currently, the only means to estimate the amount of idle memory provided
      by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
      access bit for all pages mapped to a particular process by writing 1 to
      clear_refs, wait for some time, and then count smaps:Referenced.  However,
      this method has two serious shortcomings:
      
       - it does not count unmapped file pages
       - it affects the reclaimer logic
      
      To overcome these drawbacks, this patch introduces two new page flags,
      Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
      A page's Idle flag can only be set from userspace by setting bit in
      /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
      and it is cleared whenever the page is accessed either through page tables
      (it is cleared in page_referenced() in this case) or using the read(2)
      system call (mark_page_accessed()). Thus by setting the Idle flag for
      pages of a particular workload, which can be found e.g.  by reading
      /proc/PID/pagemap, waiting for some time to let the workload access its
      working set, and then reading the bitmap file, one can estimate the amount
      of pages that are not used by the workload.
      
      The Young page flag is used to avoid interference with the memory
      reclaimer.  A page's Young flag is set whenever the Access bit of a page
      table entry pointing to the page is cleared by writing to the bitmap file.
      If page_referenced() is called on a Young page, it will add 1 to its
      return value, therefore concealing the fact that the Access bit was
      cleared.
      
      Note, since there is no room for extra page flags on 32 bit, this feature
      uses extended page flags when compiled on 32 bit.
      
      [akpm@linux-foundation.org: fix build]
      [akpm@linux-foundation.org: kpageidle requires an MMU]
      [akpm@linux-foundation.org: decouple from page-flags rework]
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Reviewed-by: NAndres Lagar-Cavilla <andreslc@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      33c3fc71
  6. 14 5月, 2015 1 次提交
  7. 12 2月, 2015 1 次提交
    • K
      mm: account pmd page tables to the process · dc6c9a35
      Kirill A. Shutemov 提交于
      Dave noticed that unprivileged process can allocate significant amount of
      memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
      memory cgroup.  The trick is to allocate a lot of PMD page tables.  Linux
      kernel doesn't account PMD tables to the process, only PTE.
      
      The use-cases below use few tricks to allocate a lot of PMD page tables
      while keeping VmRSS and VmPTE low.  oom_score for the process will be 0.
      
      	#include <errno.h>
      	#include <stdio.h>
      	#include <stdlib.h>
      	#include <unistd.h>
      	#include <sys/mman.h>
      	#include <sys/prctl.h>
      
      	#define PUD_SIZE (1UL << 30)
      	#define PMD_SIZE (1UL << 21)
      
      	#define NR_PUD 130000
      
      	int main(void)
      	{
      		char *addr = NULL;
      		unsigned long i;
      
      		prctl(PR_SET_THP_DISABLE);
      		for (i = 0; i < NR_PUD ; i++) {
      			addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
      			if (addr == MAP_FAILED) {
      				perror("mmap");
      				break;
      			}
      			*addr = 'x';
      			munmap(addr, PMD_SIZE);
      			mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
      			if (addr == MAP_FAILED)
      				perror("re-mmap"), exit(1);
      		}
      		printf("PID %d consumed %lu KiB in PMD page tables\n",
      				getpid(), i * 4096 >> 10);
      		return pause();
      	}
      
      The patch addresses the issue by account PMD tables to the process the
      same way we account PTE.
      
      The main place where PMD tables is accounted is __pmd_alloc() and
      free_pmd_range(). But there're few corner cases:
      
       - HugeTLB can share PMD page tables. The patch handles by accounting
         the table to all processes who share it.
      
       - x86 PAE pre-allocates few PMD tables on fork.
      
       - Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
         check on exit(2).
      
      Accounting only happens on configuration where PMD page table's level is
      present (PMD is not folded).  As with nr_ptes we use per-mm counter.  The
      counter value is used to calculate baseline for badness score by
      oom-killer.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reported-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Reviewed-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: David Rientjes <rientjes@google.com>
      Tested-by: NSedat Dilek <sedat.dilek@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dc6c9a35
  8. 11 2月, 2015 1 次提交
  9. 11 12月, 2014 1 次提交
  10. 10 10月, 2014 3 次提交