- 16 9月, 2019 1 次提交
-
-
由 Paul Mackerras 提交于
[ Upstream commit fd0944baad806dfb4c777124ec712c55b714ff51 ] When the 'regs' field was added to struct kvm_vcpu_arch, the code was changed to use several of the fields inside regs (e.g., gpr, lr, etc.) but not the ccr field, because the ccr field in struct pt_regs is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is only 32 bits. This changes the code to use the regs.ccr field instead of cr, and changes the assembly code on 64-bit platforms to use 64-bit loads and stores instead of 32-bit ones. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 03 4月, 2019 1 次提交
-
-
由 Diana Craciun 提交于
commit e7aa61f47b23afbec41031bc47ca8d6cb6516abc upstream. Switching from the guest to host is another place where the speculative accesses can be exploited. Flush the branch predictor when entering KVM. Signed-off-by: NDiana Craciun <diana.craciun@nxp.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 22 9月, 2014 2 次提交
-
-
由 Madhavan Srinivasan 提交于
This patch extends the use of illegal instruction as software breakpoint instruction across the ppc platform. Patch extends booke program interrupt code to support software breakpoint. Signed-off-by: NMadhavan Srinivasan <maddy@linux.vnet.ibm.com> [agraf: Fix bookehv] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Add AltiVec support in KVM for Book3e. FPU support gracefully reuse host infrastructure so follow the same approach for AltiVec. Book3e specification defines shared interrupt numbers for SPE and AltiVec units. Still SPE is present in e200/e500v2 cores while AltiVec is present in e6500 core. So we can currently decide at compile-time which of the SPE or AltiVec units to support exclusively by using CONFIG_SPE_POSSIBLE and CONFIG_PPC_E500MC defines. As Alexander Graf suggested, keep SPE and AltiVec exception handlers distinct to improve code readability. Guests have the privilege to enable AltiVec, so we always need to support AltiVec in KVM and implicitly in host to reflect interrupts and to save/restore the unit context. KVM will be loaded on cores with AltiVec unit only if CONFIG_ALTIVEC is defined. Use this define to guard KVM AltiVec logic. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 28 7月, 2014 4 次提交
-
-
由 Alexander Graf 提交于
The 440 target hasn't been properly functioning for a few releases and before I was the only one who fixes a very serious bug that indicates to me that nobody used it before either. Furthermore KVM on 440 is slow to the extent of unusable. We don't have to carry along completely unused code. Remove 440 and give us one less thing to worry about. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
SPRN_SPRG is used by debug interrupt handler, so this is required for debug support. Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
The commit 1d628af7 "add load inst fixup" made an attempt to handle failures generated by reading the guest current instruction. The fixup code that was added works by chance hiding the real issue. Load external pid (lwepx) instruction, used by KVM to read guest instructions, is executed in a subsituted guest translation context (EPLC[EGS] = 1). In consequence lwepx's TLB error and data storage interrupts need to be handled by KVM, even though these interrupts are generated from host context (MSR[GS] = 0) where lwepx is executed. Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. As a result, the host kernel handles lwepx faults searching the faulting guest data address (loaded in DEAR) in its own Logical Partition ID (LPID) 0 context. In case a host translation is found the execution returns to the lwepx instruction instead of the fixup, the host ending up in an infinite loop. Revert the commit "add load inst fixup". lwepx issue will be addressed in a subsequent patch without needing fixup code. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 20 3月, 2014 2 次提交
-
-
由 Scott Wood 提交于
While bolted handlers (including e6500) do not need to deal with a TLB miss recursively causing another TLB miss, nested TLB misses can still happen with crit/mc/debug exceptions -- so we still need to honor SPRG_TLB_EXFRAME. We don't need to spend time modifying it in the TLB miss fastpath, though -- the special level exception will handle that. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com> Cc: kvm-ppc@vger.kernel.org
-
由 Scott Wood 提交于
Previously SPRG3 was marked for use by both VDSO and critical interrupts (though critical interrupts were not fully implemented). In commit 8b64a9df ("powerpc/booke64: Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman made an attempt to resolve this conflict by restoring the VDSO value early in the critical interrupt, but this has some issues: - It's incompatible with EXCEPTION_COMMON which restores r13 from the by-then-overwritten scratch (this cost me some debugging time). - It forces critical exceptions to be a special case handled differently from even machine check and debug level exceptions. - It didn't occur to me that it was possible to make this work at all (by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after I made (most of) this patch. :-) It might be worth investigating using a load rather than SPRG on return from all exceptions (except TLB misses where the scratch never leaves the SPRG) -- it could save a few cycles. Until then, let's stick with SPRG for all exceptions. Since we cannot use SPRG4-7 for scratch without corrupting the state of a KVM guest, move VDSO to SPRG7 on book3e. Since neither SPRG4-7 nor critical interrupts exist on book3s, SPRG3 is still used for VDSO there. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com> Cc: Anton Blanchard <anton@samba.org> Cc: Paul Mackerras <paulus@samba.org> Cc: kvm-ppc@vger.kernel.org
-
- 09 1月, 2014 1 次提交
-
-
由 Tiejun Chen 提交于
Rather than calling hard_irq_disable() when we're back in C code we can just call RECONCILE_IRQ_STATE to soft disable IRQs while we're already in hard disabled state. This should be functionally equivalent to the code before, but cleaner and faster. Signed-off-by: NTiejun Chen <tiejun.chen@windriver.com> [agraf: fix comment, commit message] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 08 1月, 2014 1 次提交
-
-
由 Mihai Caraman 提交于
LRAT (Logical to Real Address Translation) present in MMU v2 provides hardware translation from a logical page number (LPN) to a real page number (RPN) when tlbwe is executed by a guest or when a page table translation occurs from a guest virtual address. Add LRAT error exception handler to Booke3E 64-bit kernel and the basic KVM handler to avoid build breakage. This is a prerequisite for KVM LRAT support that will follow. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com>
-
- 06 12月, 2012 2 次提交
-
-
由 Mihai Caraman 提交于
Add interrupt handling support for 64-bit bookehv hosts. Unify 32 and 64 bit implementations using a common stack layout and a common execution flow starting from kvm_handler_common macro. Update documentation for 64-bit input register values. This patch only address the bolted TLB miss exception handlers version. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
GET_VCPU define will not be implemented for 64-bit for performance reasons so get rid of it also on 32-bit. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 27 7月, 2012 1 次提交
-
-
由 Alexander Graf 提交于
After merging the register type check patches from Ben's tree, the hv enabled booke implementation ceased to compile. This patch fixes things up so everyone's happy again. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 11 7月, 2012 2 次提交
-
-
由 Mihai Caraman 提交于
ESR register is required by Data Storage Interrupt handling code. Add the specific flag to the interrupt handler. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Stuart Yoder 提交于
Signed-off-by: NStuart Yoder <stuart.yoder@freescale.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 10 7月, 2012 2 次提交
-
-
由 Michael Neuling 提交于
Merge the defines of VCPU_GPR from different places. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
Anything that uses a constructed instruction (ie. from ppc-opcode.h), need to use the new R0 macro, as %r0 is not going to work. Also convert usages of macros where we are just determining an offset (usually for a load/store), like: std r14,STK_REG(r14)(r1) Can't use STK_REG(r14) as %r14 doesn't work in the STK_REG macro since it's just calculating an offset. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 06 5月, 2012 4 次提交
-
-
由 Mihai Caraman 提交于
Guest r8 register is held in the scratch register and stored correctly, so remove the instruction that clobbers it. Guest r13 was missing from vcpu, store it there. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Interrupt code used PPC_LL/PPC_STL macros to load/store some of u32 fields which led to memory overflow on 64-bit. Use lwz/stw instead. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Varun Sethi 提交于
For Guest accessible SPRGs 4-7, save/restore must be handled differently for 64bit and non-64 bit case. Use the PPC_STD/PPC_LD macros for saving/restoring to/from these registers. Signed-off-by: NVarun Sethi <Varun.Sethi@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Varun Sethi 提交于
Introduced PPC_STD/PPC_LD macros for saving/restoring guest registers to/from their 64 bit copies. Signed-off-by: NVarun Sethi <Varun.Sethi@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 08 4月, 2012 10 次提交
-
-
由 Bharat Bhushan 提交于
No instruction which can change Condition Register (CR) should be executed after Guest CR is loaded. So the guest CR is restored after the Exit Timing in lightweight_exit executes cmpw, which can clobber CR. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
On PPC, CR2-CR4 are nonvolatile, thus have to be saved across function calls. We didn't respect that for any architecture until Paul spotted it in his patch for Book3S-HV. This patch saves/restores CR for all KVM capable PPC hosts. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
There was some unused code in the exit code path that must have been a leftover from earlier iterations. While it did no harm, it's superfluous and thus should be removed. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
We need to make sure that no MAS updates happen automatically while we have the guest MAS registers loaded. So move the disabling code a bit higher up so that it covers the full time we have guest values in MAS registers. The race this patch fixes should never occur, but it makes the code a bit more logical to do it this way around. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
The SET_VCPU macro is a leftover from times when the vcpu struct wasn't stored in the thread on vcpu_load/put. It's not needed anymore. Remove it. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
Instead if doing #ifndef CONFIG_64BIT ... #else ... #endif we should rather do #ifdef CONFIG_64BIT ... #else ... #endif which is a lot easier to read. Change the bookehv implementation to stick with this rule. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
When using exit timing stats, we clobber r9 in the NEED_EMU case, so better move that part down a few lines and fix it that way. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
There's always a chance we're unable to read a guest instruction. The guest could have its TLB mapped execute-, but not readable, something odd happens and our TLB gets flushed. So it's a good idea to be prepared for that case and have a fallback that allows us to fix things up in that case. Add fixup code that keeps guest code from potentially crashing our host kernel. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Alexander Graf 提交于
If we hit any exception whatsoever in the restore path and r1/r2 aren't the host registers, we don't get a working oops. So it's always a good idea to restore them as early as possible. This time, it actually has practical reasons to do so too, since we need to have the host page fault handler fix up our guest instruction read code. And for that to work we need r1/r2 restored. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Scott Wood 提交于
Chips such as e500mc that implement category E.HV in Power ISA 2.06 provide hardware virtualization features, including a new MSR mode for guest state. The guest OS can perform many operations without trapping into the hypervisor, including transitions to and from guest userspace. Since we can use SRR1[GS] to reliably tell whether an exception came from guest state, instead of messing around with IVPR, we use DO_KVM similarly to book3s. Current issues include: - Machine checks from guest state are not routed to the host handler. - The guest can cause a host oops by executing an emulated instruction in a page that lacks read permission. Existing e500/4xx support has the same problem. Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>, Varun Sethi <Varun.Sethi@freescale.com>, and Liu Yu <yu.liu@freescale.com>. Signed-off-by: NScott Wood <scottwood@freescale.com> [agraf: remove pt_regs usage] Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-