- 13 1月, 2019 1 次提交
-
-
由 Kirill A. Shutemov 提交于
[ Upstream commit 16877a5570e0c5f4270d5b17f9bab427bcae9514 ] There is a guard hole at the beginning of the kernel address space, also used by hypervisors. It occupies 16 PGD entries. This reserved range is not defined explicitely, it is calculated relative to other entities: direct mapping and user space ranges. The calculation got broken by recent changes of the kernel memory layout: LDT remap range is now mapped before direct mapping and makes the calculation invalid. The breakage leads to crash on Xen dom0 boot[1]. Define the reserved range explicitely. It's part of kernel ABI (hypervisors expect it to be stable) and must not depend on changes in the rest of kernel memory layout. [1] https://lists.xenproject.org/archives/html/xen-devel/2018-11/msg03313.html Fixes: d52888aa2753 ("x86/mm: Move LDT remap out of KASLR region on 5-level paging") Reported-by: NHans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NHans van Kranenburg <hans.van.kranenburg@mendix.com> Reviewed-by: NJuergen Gross <jgross@suse.com> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: dave.hansen@linux.intel.com Cc: luto@kernel.org Cc: peterz@infradead.org Cc: boris.ostrovsky@oracle.com Cc: bhe@redhat.com Cc: linux-mm@kvack.org Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20181130202328.65359-2-kirill.shutemov@linux.intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 10 1月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit e81434995081fd7efb755fd75576b35dbb0850b1 upstream. ____kvm_handle_fault_on_reboot() provides a generic exception fixup handler that is used to cleanly handle faults on VMX/SVM instructions during reboot (or at least try to). If there isn't a reboot in progress, ____kvm_handle_fault_on_reboot() treats any exception as fatal to KVM and invokes kvm_spurious_fault(), which in turn generates a BUG() to get a stack trace and die. When it was originally added by commit 4ecac3fd ("KVM: Handle virtualization instruction #UD faults during reboot"), the "call" to kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value is the RIP of the faulting instructing. The PUSH+JMP trickery is necessary because the exception fixup handler code lies outside of its associated function, e.g. right after the function. An actual CALL from the .fixup code would show a slightly bogus stack trace, e.g. an extra "random" function would be inserted into the trace, as the return RIP on the stack would point to no known function (and the unwinder will likely try to guess who owns the RIP). Unfortunately, the JMP was replaced with a CALL when the macro was reworked to not spin indefinitely during reboot (commit b7c4145b "KVM: Don't spin on virt instruction faults during reboot"). This causes the aforementioned behavior where a bogus function is inserted into the stack trace, e.g. my builds like to blame free_kvm_area(). Revert the CALL back to a JMP. The changelog for commit b7c4145b ("KVM: Don't spin on virt instruction faults during reboot") contains nothing that indicates the switch to CALL was deliberate. This is backed up by the fact that the PUSH <insn RIP> was left intact. Note that an alternative to the PUSH+JMP magic would be to JMP back to the "real" code and CALL from there, but that would require adding a JMP in the non-faulting path to avoid calling kvm_spurious_fault() and would add no value, i.e. the stack trace would be the same. Using CALL: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0 R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000 FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0 Call Trace: free_kvm_area+0x1044/0x43ea [kvm_intel] ? vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace 9775b14b123b1713 ]--- Using JMP: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0 R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40 FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0 Call Trace: vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace f9daedb85ab3ddba ]--- Fixes: b7c4145b ("KVM: Don't spin on virt instruction faults during reboot") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 12月, 2018 1 次提交
-
-
由 Eduardo Habkost 提交于
commit 0e1b869fff60c81b510c2d00602d778f8f59dd9a upstream. Some guests OSes (including Windows 10) write to MSR 0xc001102c on some cases (possibly while trying to apply a CPU errata). Make KVM ignore reads and writes to that MSR, so the guest won't crash. The MSR is documented as "Execution Unit Configuration (EX_CFG)", at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors". Cc: stable@vger.kernel.org Signed-off-by: NEduardo Habkost <ehabkost@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 21 12月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
commit 7aa54be2 upstream. On x86 we cannot do fetch_or() with a single instruction and thus end up using a cmpxchg loop, this reduces determinism. Replace the fetch_or() with a composite operation: tas-pending + load. Using two instructions of course opens a window we previously did not have. Consider the scenario: CPU0 CPU1 CPU2 1) lock trylock -> (0,0,1) 2) lock trylock /* fail */ 3) unlock -> (0,0,0) 4) lock trylock -> (0,0,1) 5) tas-pending -> (0,1,1) load-val <- (0,1,0) from 3 6) clear-pending-set-locked -> (0,0,1) FAIL: _2_ owners where 5) is our new composite operation. When we consider each part of the qspinlock state as a separate variable (as we can when _Q_PENDING_BITS == 8) then the above is entirely possible, because tas-pending will only RmW the pending byte, so the later load is able to observe prior tail and lock state (but not earlier than its own trylock, which operates on the whole word, due to coherence). To avoid this we need 2 things: - the load must come after the tas-pending (obviously, otherwise it can trivially observe prior state). - the tas-pending must be a full word RmW instruction, it cannot be an XCHGB for example, such that we cannot observe other state prior to setting pending. On x86 we can realize this by using "LOCK BTS m32, r32" for tas-pending followed by a regular load. Note that observing later state is not a problem: - if we fail to observe a later unlock, we'll simply spin-wait for that store to become visible. - if we observe a later xchg_tail(), there is no difference from that xchg_tail() having taken place before the tas-pending. Suggested-by: NWill Deacon <will.deacon@arm.com> Reported-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NWill Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: andrea.parri@amarulasolutions.com Cc: longman@redhat.com Fixes: 59fb586b ("locking/qspinlock: Remove unbounded cmpxchg() loop from locking slowpath") Link: https://lkml.kernel.org/r/20181003130957.183726335@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org> [bigeasy: GEN_BINARY_RMWcc macro redo] Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 12月, 2018 14 次提交
-
-
由 Leonid Shatz 提交于
commit 326e742533bf0a23f0127d8ea62fb558ba665f08 upstream. Since commit e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NLeonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 6b3e64c2 upstream If 'prctl' mode of user space protection from spectre v2 is selected on the kernel command-line, STIBP and IBPB are applied on tasks which restrict their indirect branch speculation via prctl. SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it makes sense to prevent spectre v2 user space to user space attacks as well. The Intel mitigation guide documents how STIPB works: Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor prevents the predicted targets of indirect branches on any logical processor of that core from being controlled by software that executes (or executed previously) on another logical processor of the same core. Ergo setting STIBP protects the task itself from being attacked from a task running on a different hyper-thread and protects the tasks running on different hyper-threads from being attacked. While the document suggests that the branch predictors are shielded between the logical processors, the observed performance regressions suggest that STIBP simply disables the branch predictor more or less completely. Of course the document wording is vague, but the fact that there is also no requirement for issuing IBPB when STIBP is used points clearly in that direction. The kernel still issues IBPB even when STIBP is used until Intel clarifies the whole mechanism. IBPB is issued when the task switches out, so malicious sandbox code cannot mistrain the branch predictor for the next user space task on the same logical processor. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 9137bb27 upstream Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 6d991ba509ebcfcc908e009d1db51972a4f7a064 upstream The seccomp speculation control operates on all tasks of a process, but only the current task of a process can update the MSR immediately. For the other threads the update is deferred to the next context switch. This creates the following situation with Process A and B: Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2 does not have the speculation control TIF bit set. Process B task 1 has the speculation control TIF bit set. CPU0 CPU1 MSR bit is set ProcB.T1 schedules out ProcA.T2 schedules in MSR bit is cleared ProcA.T1 seccomp_update() set TIF bit on ProcA.T2 ProcB.T1 schedules in MSR is not updated <-- FAIL This happens because the context switch code tries to avoid the MSR update if the speculation control TIF bits of the incoming and the outgoing task are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks scheduling back and forth on CPU1, which keeps the MSR stale forever. In theory this could be remedied by IPIs, but chasing the remote task which could be migrated is complex and full of races. The straight forward solution is to avoid the asychronous update of the TIF bit and defer it to the next context switch. The speculation control state is stored in task_struct::atomic_flags by the prctl and seccomp updates already. Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the atomic_flags. Check the bit on context switch and force a synchronous update of the speculation control if set. Use the same mechanism for updating the current task. Reported-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 4c71a2b6 upstream The IBPB speculation barrier is issued from switch_mm() when the kernel switches to a user space task with a different mm than the user space task which ran last on the same CPU. An additional optimization is to avoid IBPB when the incoming task can be ptraced by the outgoing task. This optimization only works when switching directly between two user space tasks. When switching from a kernel task to a user space task the optimization fails because the previous task cannot be accessed anymore. So for quite some scenarios the optimization is just adding overhead. The upcoming conditional IBPB support will issue IBPB only for user space tasks which have the TIF_SPEC_IB bit set. This requires to handle the following cases: 1) Switch from a user space task (potential attacker) which has TIF_SPEC_IB set to a user space task (potential victim) which has TIF_SPEC_IB not set. 2) Switch from a user space task (potential attacker) which has TIF_SPEC_IB not set to a user space task (potential victim) which has TIF_SPEC_IB set. This needs to be optimized for the case where the IBPB can be avoided when only kernel threads ran in between user space tasks which belong to the same process. The current check whether two tasks belong to the same context is using the tasks context id. While correct, it's simpler to use the mm pointer because it allows to mangle the TIF_SPEC_IB bit into it. The context id based mechanism requires extra storage, which creates worse code. When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into the per CPU storage which is used to track the last user space mm which was running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of the incoming task to make the decision whether IBPB needs to be issued or not to cover the two cases above. As conditional IBPB is going to be the default, remove the dubious ptrace check for the IBPB always case and simply issue IBPB always when the process changes. Move the storage to a different place in the struct as the original one created a hole. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 5635d99953f04b550738f6f4c1c532667c3fd872 upstream The TIF_SPEC_IB bit does not need to be evaluated in the decision to invoke __switch_to_xtra() when: - CONFIG_SMP is disabled - The conditional STIPB mode is disabled The TIF_SPEC_IB bit still controls IBPB in both cases so the TIF work mask checks might invoke __switch_to_xtra() for nothing if TIF_SPEC_IB is the only set bit in the work masks. Optimize it out by masking the bit at compile time for CONFIG_SMP=n and at run time when the static key controlling the conditional STIBP mode is disabled. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.374062201@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit ff16701a29cba3aafa0bd1656d766813b2d0a811 upstream Move the conditional invocation of __switch_to_xtra() into an inline function so the logic can be shared between 32 and 64 bit. Remove the handthrough of the TSS pointer and retrieve the pointer directly in the bitmap handling function. Use this_cpu_ptr() instead of the per_cpu() indirection. This is a preparatory change so integration of conditional indirect branch speculation optimization happens only in one place. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.280855518@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tim Chen 提交于
commit 5bfbe3ad5840d941b89bcac54b821ba14f50a0ba upstream To avoid the overhead of STIBP always on, it's necessary to allow per task control of STIBP. Add a new task flag TIF_SPEC_IB and evaluate it during context switch if SMT is active and flag evaluation is enabled by the speculation control code. Add the conditional evaluation to x86_virt_spec_ctrl() as well so the guest/host switch works properly. This has no effect because TIF_SPEC_IB cannot be set yet and the static key which controls evaluation is off. Preparatory patch for adding the control code. [ tglx: Simplify the context switch logic and make the TIF evaluation depend on SMP=y and on the static key controlling the conditional update. Rename it to TIF_SPEC_IB because it controls both STIBP and IBPB ] Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.176917199@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit fa1202ef224391b6f5b26cdd44cc50495e8fab54 upstream Add command line control for user space indirect branch speculation mitigations. The new option is: spectre_v2_user= The initial options are: - on: Unconditionally enabled - off: Unconditionally disabled -auto: Kernel selects mitigation (default off for now) When the spectre_v2= command line argument is either 'on' or 'off' this implies that the application to application control follows that state even if a contradicting spectre_v2_user= argument is supplied. Originally-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.082720373@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 26c4d75b234040c11728a8acb796b3a85ba7507c upstream During context switch, the SSBD bit in SPEC_CTRL MSR is updated according to changes of the TIF_SSBD flag in the current and next running task. Currently, only the bit controlling speculative store bypass disable in SPEC_CTRL MSR is updated and the related update functions all have "speculative_store" or "ssb" in their names. For enhanced mitigation control other bits in SPEC_CTRL MSR need to be updated as well, which makes the SSB names inadequate. Rename the "speculative_store*" functions to a more generic name. No functional change. Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.058866968@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tim Chen 提交于
commit 8eb729b77faf83ac4c1f363a9ad68d042415f24c upstream "Reduced Data Speculation" is an obsolete term. The correct new name is "Speculative store bypass disable" - which is abbreviated into SSBD. Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185003.593893901@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Zhenzhong Duan 提交于
commit ef014aae8f1cd2793e4e014bbb102bed53f852b7 upstream Now that CONFIG_RETPOLINE hard depends on compiler support, there is no reason to keep the minimal retpoline support around which only provided basic protection in the assembly files. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NZhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Borislav Petkov <bp@suse.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: <srinivas.eeda@oracle.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/f06f0a89-5587-45db-8ed2-0a9d6638d5c0@defaultSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Zhenzhong Duan 提交于
commit 4cd24de3a0980bf3100c9dcb08ef65ca7c31af48 upstream Since retpoline capable compilers are widely available, make CONFIG_RETPOLINE hard depend on the compiler capability. Break the build when CONFIG_RETPOLINE is enabled and the compiler does not support it. Emit an error message in that case: "arch/x86/Makefile:226: *** You are building kernel with non-retpoline compiler, please update your compiler.. Stop." [dwmw: Fail the build with non-retpoline compiler] Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NZhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Borislav Petkov <bp@suse.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michal Marek <michal.lkml@markovi.net> Cc: <srinivas.eeda@oracle.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/cca0cb20-f9e2-4094-840b-fb0f8810cd34@defaultSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Zhenzhong Duan 提交于
commit 0cbb76d6285794f30953bfa3ab831714b59dd700 upstream ..so that they match their asm counterpart. Add the missing ANNOTATE_NOSPEC_ALTERNATIVE in CALL_NOSPEC, while at it. Signed-off-by: NZhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wang YanQing <udknight@gmail.com> Cc: dhaval.giani@oracle.com Cc: srinivas.eeda@oracle.com Link: http://lkml.kernel.org/r/c3975665-173e-4d70-8dee-06c926ac26ee@defaultSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 27 11月, 2018 1 次提交
-
-
由 Kirill A. Shutemov 提交于
commit d52888aa upstream On 5-level paging the LDT remap area is placed in the middle of the KASLR randomization region and it can overlap with the direct mapping, the vmalloc or the vmap area. The LDT mapping is per mm, so it cannot be moved into the P4D page table next to the CPU_ENTRY_AREA without complicating PGD table allocation for 5-level paging. The 4 PGD slot gap just before the direct mapping is reserved for hypervisors, so it cannot be used. Move the direct mapping one slot deeper and use the resulting gap for the LDT remap area. The resulting layout is the same for 4 and 5 level paging. [ tglx: Massaged changelog ] Fixes: f55f0501 ("x86/pti: Put the LDT in its own PGD if PTI is on") Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAndy Lutomirski <luto@kernel.org> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: dave.hansen@linux.intel.com Cc: peterz@infradead.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: bhe@redhat.com Cc: willy@infradead.org Cc: linux-mm@kvack.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181026122856.66224-2-kirill.shutemov@linux.intel.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 21 11月, 2018 2 次提交
-
-
由 Vishal Verma 提交于
commit e8a308e5 upstream. The NFIT machine check handler uses the physical address from the mce structure, and compares it against information in the ACPI NFIT table to determine whether that location lies on an NVDIMM. The mce->addr field however may not always be valid, and this is indicated by the MCI_STATUS_ADDRV bit in the status field. Export mce_usable_address() which already performs validation for the address, and use it in the NFIT handler. Fixes: 6839a6d9 ("nfit: do an ARS scrub on hitting a latent media error") Reported-by: NRobert Elliott <elliott@hpe.com> Signed-off-by: NVishal Verma <vishal.l.verma@intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> CC: Arnd Bergmann <arnd@arndb.de> Cc: Dan Williams <dan.j.williams@intel.com> CC: Dave Jiang <dave.jiang@intel.com> CC: elliott@hpe.com CC: "H. Peter Anvin" <hpa@zytor.com> CC: Ingo Molnar <mingo@redhat.com> CC: Len Brown <lenb@kernel.org> CC: linux-acpi@vger.kernel.org CC: linux-edac <linux-edac@vger.kernel.org> CC: linux-nvdimm@lists.01.org CC: Qiuxu Zhuo <qiuxu.zhuo@intel.com> CC: "Rafael J. Wysocki" <rjw@rjwysocki.net> CC: Ross Zwisler <zwisler@kernel.org> CC: stable <stable@vger.kernel.org> CC: Thomas Gleixner <tglx@linutronix.de> CC: Tony Luck <tony.luck@intel.com> CC: x86-ml <x86@kernel.org> CC: Yazen Ghannam <yazen.ghannam@amd.com> Link: http://lkml.kernel.org/r/20181026003729.8420-2-vishal.l.verma@intel.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Vishal Verma 提交于
commit 5d96c9342c23ee1d084802dcf064caa67ecaa45b upstream. The MCE handler for nfit devices is called for memory errors on a Non-Volatile DIMM and adds the error location to a 'badblocks' list. This list is used by the various NVDIMM drivers to avoid consuming known poison locations during IO. The MCE handler gets called for both corrected and uncorrectable errors. Until now, both kinds of errors have been added to the badblocks list. However, corrected memory errors indicate that the problem has already been fixed by hardware, and the resulting interrupt is merely a notification to Linux. As far as future accesses to that location are concerned, it is perfectly fine to use, and thus doesn't need to be included in the above badblocks list. Add a check in the nfit MCE handler to filter out corrected mce events, and only process uncorrectable errors. Fixes: 6839a6d9 ("nfit: do an ARS scrub on hitting a latent media error") Reported-by: NOmar Avelar <omar.avelar@intel.com> Signed-off-by: NVishal Verma <vishal.l.verma@intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> CC: Arnd Bergmann <arnd@arndb.de> CC: Dan Williams <dan.j.williams@intel.com> CC: Dave Jiang <dave.jiang@intel.com> CC: elliott@hpe.com CC: "H. Peter Anvin" <hpa@zytor.com> CC: Ingo Molnar <mingo@redhat.com> CC: Len Brown <lenb@kernel.org> CC: linux-acpi@vger.kernel.org CC: linux-edac <linux-edac@vger.kernel.org> CC: linux-nvdimm@lists.01.org CC: Qiuxu Zhuo <qiuxu.zhuo@intel.com> CC: "Rafael J. Wysocki" <rjw@rjwysocki.net> CC: Ross Zwisler <zwisler@kernel.org> CC: stable <stable@vger.kernel.org> CC: Thomas Gleixner <tglx@linutronix.de> CC: Tony Luck <tony.luck@intel.com> CC: x86-ml <x86@kernel.org> CC: Yazen Ghannam <yazen.ghannam@amd.com> Link: http://lkml.kernel.org/r/20181026003729.8420-1-vishal.l.verma@intel.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 14 11月, 2018 2 次提交
-
-
由 Jim Mattson 提交于
[ Upstream commit cfb634fe ] According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit qualification field for debug exceptions are reserved (cleared to 0). However, the SDM is incorrect about bit 16 (corresponding to DR6.RTM). This bit should be set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled. Note that this is the opposite of DR6.RTM, which "indicates (when clear) that a debug exception (#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled." There is still an issue with stale DR6 bits potentially being misreported for the current debug exception. DR6 should not have been modified before vectoring the #DB exception, and the "new DR6 bits" should be available somewhere, but it was and they aren't. Fixes: b96fb439 ("KVM: nVMX: fixes to nested virt interrupt injection") Signed-off-by: NJim Mattson <jmattson@google.com> Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
commit f77084d96355f5fba8e2c1fb3a51a393b1570de7 upstream. The WARN_ON_ONCE(__read_cr3() != build_cr3()) in switch_mm_irqs_off() triggers every once in a while during a snapshotted system upgrade. The warning triggers since commit decab088 ("x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()"). The callchain is: get_page_from_freelist() -> post_alloc_hook() -> __kernel_map_pages() with CONFIG_DEBUG_PAGEALLOC enabled. Disable preemption during CR3 reset / __flush_tlb_all() and add a comment why preemption has to be disabled so it won't be removed accidentaly. Add another preemptible() check in __flush_tlb_all() to catch callers with enabled preemption when PGE is enabled, because PGE enabled does not trigger the warning in __native_flush_tlb(). Suggested by Andy Lutomirski. Fixes: decab088 ("x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()") Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181017103432.zgv46nlu3hc7k4rq@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 10月, 2018 1 次提交
-
-
x86/fpu: Fix i486 + no387 boot crash by only saving FPU registers on context switch if there is an FPU Booting an i486 with "no387 nofxsr" ends with with the following crash: math_emulate: 0060:c101987d Kernel panic - not syncing: Math emulation needed in kernel on the first context switch in user land. The reason is that copy_fpregs_to_fpstate() tries FNSAVE which does not work as the FPU is turned off. This bug was introduced in: f1c8cd01 ("x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active") Add a check for X86_FEATURE_FPU before trying to save FPU registers (we have such a check in switch_fpu_finish() already). Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: NAndy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: f1c8cd01 ("x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active") Link: http://lkml.kernel.org/r/20181016202525.29437-4-bigeasy@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 10月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
Eric reported that a sequence count loop using this_cpu_read() got optimized out. This is wrong, this_cpu_read() must imply READ_ONCE() because the interface is IRQ-safe, therefore an interrupt can have changed the per-cpu value. Fixes: 7c3576d2 ("[PATCH] i386: Convert PDA into the percpu section") Reported-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NEric Dumazet <edumazet@google.com> Cc: hpa@zytor.com Cc: eric.dumazet@gmail.com Cc: bp@alien8.de Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181011104019.748208519@infradead.org
-
- 10 10月, 2018 1 次提交
-
-
由 Jan Kara 提交于
Currently _PAGE_DEVMAP bit is not preserved in mprotect(2) calls. As a result we will see warnings such as: BUG: Bad page map in process JobWrk0013 pte:800001803875ea25 pmd:7624381067 addr:00007f0930720000 vm_flags:280000f9 anon_vma: (null) mapping:ffff97f2384056f0 index:0 file:457-000000fe00000030-00000009-000000ca-00000001_2001.fileblock fault:xfs_filemap_fault [xfs] mmap:xfs_file_mmap [xfs] readpage: (null) CPU: 3 PID: 15848 Comm: JobWrk0013 Tainted: G W 4.12.14-2.g7573215-default #1 SLE12-SP4 (unreleased) Hardware name: Intel Corporation S2600WFD/S2600WFD, BIOS SE5C620.86B.01.00.0833.051120182255 05/11/2018 Call Trace: dump_stack+0x5a/0x75 print_bad_pte+0x217/0x2c0 ? enqueue_task_fair+0x76/0x9f0 _vm_normal_page+0xe5/0x100 zap_pte_range+0x148/0x740 unmap_page_range+0x39a/0x4b0 unmap_vmas+0x42/0x90 unmap_region+0x99/0xf0 ? vma_gap_callbacks_rotate+0x1a/0x20 do_munmap+0x255/0x3a0 vm_munmap+0x54/0x80 SyS_munmap+0x1d/0x30 do_syscall_64+0x74/0x150 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 ... when mprotect(2) gets used on DAX mappings. Also there is a wide variety of other failures that can result from the missing _PAGE_DEVMAP flag when the area gets used by get_user_pages() later. Fix the problem by including _PAGE_DEVMAP in a set of flags that get preserved by mprotect(2). Fixes: 69660fd7 ("x86, mm: introduce _PAGE_DEVMAP") Fixes: ebd31197 ("powerpc/mm: Add devmap support for ppc64") Cc: <stable@vger.kernel.org> Signed-off-by: NJan Kara <jack@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 03 10月, 2018 1 次提交
-
-
由 Mike Travis 提交于
Introduce is_early_uv_system() which uses efi.uv_systab to decide early in the boot process whether the kernel runs on a UV system. This is needed to skip other early setup/init code that might break the UV platform if done too early such as before necessary ACPI tables parsing takes place. Suggested-by: NHedi Berriche <hedi.berriche@hpe.com> Signed-off-by: NMike Travis <mike.travis@hpe.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NRuss Anderson <rja@hpe.com> Reviewed-by: NDimitri Sivanich <sivanich@hpe.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Russ Anderson <russ.anderson@hpe.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Len Brown <len.brown@intel.com> Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Xiaoming Gao <gxm.linux.kernel@gmail.com> Cc: Rajvi Jingar <rajvi.jingar@intel.com> Link: https://lkml.kernel.org/r/20181002180144.801700401@stormcage.americas.sgi.com
-
- 02 10月, 2018 1 次提交
-
-
由 Natarajan, Janakarajan 提交于
In Family 17h, some L3 Cache Performance events require the ThreadMask and SliceMask to be set. For other events, these fields do not affect the count either way. Set ThreadMask and SliceMask to 0xFF and 0xF respectively. Signed-off-by: NJanakarajan Natarajan <Janakarajan.Natarajan@amd.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H . Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Suravee <Suravee.Suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/Message-ID: Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 9月, 2018 1 次提交
-
-
由 Feng Tang 提交于
We met a kernel panic when enabling earlycon, which is due to the fixmap address of earlycon is not statically setup. Currently the static fixmap setup in head_64.S only covers 2M virtual address space, while it actually could be in 4M space with different kernel configurations, e.g. when VSYSCALL emulation is disabled. So increase the static space to 4M for now by defining FIXMAP_PMD_NUM to 2, and add a build time check to ensure that the fixmap is covered by the initial static page tables. Fixes: 1ad83c85 ("x86_64,vsyscall: Make vsyscall emulation configurable") Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NFeng Tang <feng.tang@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: Nkernel test robot <rong.a.chen@intel.com> Reviewed-by: Juergen Gross <jgross@suse.com> (Xen parts) Cc: H Peter Anvin <hpa@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180920025828.23699-1-feng.tang@intel.com
-
- 20 9月, 2018 5 次提交
-
-
由 Drew Schmitt 提交于
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access to reads of MSR_PLATFORM_INFO. Disabling access to reads of this MSR gives userspace the control to "expose" this platform-dependent information to guests in a clear way. As it exists today, guests that read this MSR would get unpopulated information if userspace hadn't already set it (and prior to this patch series, only the CPUID faulting information could have been populated). This existing interface could be confusing if guests don't handle the potential for incorrect/incomplete information gracefully (e.g. zero reported for base frequency). Signed-off-by: NDrew Schmitt <dasch@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Liran Alon 提交于
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state, it is possible for a vCPU to be blocked while it is in guest-mode. According to Intel SDM 26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery: "These events wake the logical processor if it just entered the HLT state because of a VM entry". Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU should be waken from the HLT state and injected with the interrupt. In addition, if while the vCPU is blocked (while it is in guest-mode), it receives a nested posted-interrupt, then the vCPU should also be waken and injected with the posted interrupt. To handle these cases, this patch enhances kvm_vcpu_has_events() to also check if there is a pending interrupt in L2 virtual APICv provided by L1. That is, it evaluates if there is a pending virtual interrupt for L2 by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1 Evaluation of Pending Interrupts. Note that this also handles the case of nested posted-interrupt by the fact RVI is updated in vmx_complete_nested_posted_interrupt() which is called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() -> kvm_vcpu_running() -> vmx_check_nested_events() -> vmx_complete_nested_posted_interrupt(). Reviewed-by: NNikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
These structures are going to be used from KVM code so let's make their names reflect their Hyper-V origin. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NRoman Kagan <rkagan@virtuozzo.com> Acked-by: NK. Y. Srinivasan <kys@microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
A VMX preemption timer value of '0' is guaranteed to cause a VMExit prior to the CPU executing any instructions in the guest. Use the preemption timer (if it's supported) to trigger immediate VMExit in place of the current method of sending a self-IPI. This ensures that pending VMExit injection to L1 occurs prior to executing any instructions in the guest (regardless of nesting level). When deferring VMExit injection, KVM generates an immediate VMExit from the (possibly nested) guest by sending itself an IPI. Because hardware interrupts are blocked prior to VMEnter and are unblocked (in hardware) after VMEnter, this results in taking a VMExit(INTR) before any guest instruction is executed. But, as this approach relies on the IPI being received before VMEnter executes, it only works as intended when KVM is running as L0. Because there are no architectural guarantees regarding when IPIs are delivered, when running nested the INTR may "arrive" long after L2 is running e.g. L0 KVM doesn't force an immediate switch to L1 to deliver an INTR. For the most part, this unintended delay is not an issue since the events being injected to L1 also do not have architectural guarantees regarding their timing. The notable exception is the VMX preemption timer[1], which is architecturally guaranteed to cause a VMExit prior to executing any instructions in the guest if the timer value is '0' at VMEnter. Specifically, the delay in injecting the VMExit causes the preemption timer KVM unit test to fail when run in a nested guest. Note: this approach is viable even on CPUs with a broken preemption timer, as broken in this context only means the timer counts at the wrong rate. There are no known errata affecting timer value of '0'. [1] I/O SMIs also have guarantees on when they arrive, but I have no idea if/how those are emulated in KVM. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> [Use a hook for SVM instead of leaving the default in x86.c - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
When VMX is used with flexpriority disabled (because of no support or if disabled with module parameter) MMIO interface to lAPIC is still available in x2APIC mode while it shouldn't be (kvm-unit-tests): PASS: apic_disable: Local apic enabled in x2APIC mode PASS: apic_disable: CPUID.1H:EDX.APIC[bit 9] is set FAIL: apic_disable: *0xfee00030: 50014 The issue appears because we basically do nothing while switching to x2APIC mode when APIC access page is not used. apic_mmio_{read,write} only check if lAPIC is disabled before proceeding to actual write. When APIC access is virtualized we correctly manipulate with VMX controls in vmx_set_virtual_apic_mode() and we don't get vmexits from memory writes in x2APIC mode so there's no issue. Disabling MMIO interface seems to be easy. The question is: what do we do with these reads and writes? If we add apic_x2apic_mode() check to apic_mmio_in_range() and return -EOPNOTSUPP these reads and writes will go to userspace. When lAPIC is in kernel, Qemu uses this interface to inject MSIs only (see kvm_apic_mem_write() in hw/i386/kvm/apic.c). This somehow works with disabled lAPIC but when we're in xAPIC mode we will get a real injected MSI from every write to lAPIC. Not good. The simplest solution seems to be to just ignore writes to the region and return ~0 for all reads when we're in x2APIC mode. This is what this patch does. However, this approach is inconsistent with what currently happens when flexpriority is enabled: we allocate APIC access page and create KVM memory region so in x2APIC modes all reads and writes go to this pre-allocated page which is, btw, the same for all vCPUs. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 16 9月, 2018 1 次提交
-
-
由 Brijesh Singh 提交于
kvmclock defines few static variables which are shared with the hypervisor during the kvmclock initialization. When SEV is active, memory is encrypted with a guest-specific key, and if the guest OS wants to share the memory region with the hypervisor then it must clear the C-bit before sharing it. Currently, we use kernel_physical_mapping_init() to split large pages before clearing the C-bit on shared pages. But it fails when called from the kvmclock initialization (mainly because the memblock allocator is not ready that early during boot). Add a __bss_decrypted section attribute which can be used when defining such shared variable. The so-defined variables will be placed in the .bss..decrypted section. This section will be mapped with C=0 early during boot. The .bss..decrypted section has a big chunk of memory that may be unused when memory encryption is not active, free it when memory encryption is not active. Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NBrijesh Singh <brijesh.singh@amd.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Radim Krčmář<rkrcmar@redhat.com> Cc: kvm@vger.kernel.org Link: https://lkml.kernel.org/r/1536932759-12905-2-git-send-email-brijesh.singh@amd.com
-
- 14 9月, 2018 1 次提交
-
-
由 Joerg Roedel 提交于
This reverts commit 1f40a46c. It turned out that this patch is not sufficient to enable PTI on 32 bit systems with legacy 2-level page-tables. In this paging mode the huge-page PTEs are in the top-level page-table directory, where also the mirroring to the user-space page-table happens. So every huge PTE exits twice, in the kernel and in the user page-table. That means that accessed/dirty bits need to be fetched from two PTEs in this mode to be safe, but this is not trivial to implement because it needs changes to generic code just for the sake of enabling PTI with 32-bit legacy paging. As all systems that need PTI should support PAE anyway, remove support for PTI when 32-bit legacy paging is used. Fixes: 7757d607 ('x86/pti: Allow CONFIG_PAGE_TABLE_ISOLATION for x86_32') Reported-by: NMeelis Roos <mroos@linux.ee> Signed-off-by: NJoerg Roedel <jroedel@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Cc: linux-mm@kvack.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Link: https://lkml.kernel.org/r/1536922754-31379-1-git-send-email-joro@8bytes.org
-
- 08 9月, 2018 2 次提交
-
-
由 Nadav Amit 提交于
When page-table entries are set, the compiler might optimize their assignment by using multiple instructions to set the PTE. This might turn into a security hazard if the user somehow manages to use the interim PTE. L1TF does not make our lives easier, making even an interim non-present PTE a security hazard. Using WRITE_ONCE() to set PTEs and friends should prevent this potential security hazard. I skimmed the differences in the binary with and without this patch. The differences are (obviously) greater when CONFIG_PARAVIRT=n as more code optimizations are possible. For better and worse, the impact on the binary with this patch is pretty small. Skimming the code did not cause anything to jump out as a security hazard, but it seems that at least move_soft_dirty_pte() caused set_pte_at() to use multiple writes. Signed-off-by: NNadav Amit <namit@vmware.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180902181451.80520-1-namit@vmware.com
-
由 Wanpeng Li 提交于
Dan Carpenter reported that the untrusted data returns from kvm_register_read() results in the following static checker warning: arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi() error: buffer underflow 'map->phys_map' 's32min-s32max' KVM guest can easily trigger this by executing the following assembly sequence in Ring0: mov $10, %rax mov $0xFFFFFFFF, %rbx mov $0xFFFFFFFF, %rdx mov $0, %rsi vmcall As this will cause KVM to execute the following code-path: vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi() which will reach out-of-bounds access. This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id, ignoring destinations that are not present and delivering the rest. We also check whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> [Add second "if (min > map->max_apic_id)" to complete the fix. -Radim] Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 07 9月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to deal with. Drop the now obsolete code. Fixes: fb1522e0 ("KVM: update to new mmu_notifier semantic v2") Cc: James Hogan <jhogan@kernel.org> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 06 9月, 2018 1 次提交
-
-
由 Jann Horn 提交于
When the kernel.print-fatal-signals sysctl has been enabled, a simple userspace crash will cause the kernel to write a crash dump that contains, among other things, the kernel gsbase into dmesg. As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE in this case. This also moves the bitness-specific logic from show_regs() into process_{32,64}.c. Fixes: 45807a1d ("vdso: print fatal signals") Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com
-