1. 14 2月, 2015 5 次提交
    • A
      x86_64: kasan: add interceptors for memset/memmove/memcpy functions · 393f203f
      Andrey Ryabinin 提交于
      Recently instrumentation of builtin functions calls was removed from GCC
      5.0.  To check the memory accessed by such functions, userspace asan
      always uses interceptors for them.
      
      So now we should do this as well.  This patch declares
      memset/memmove/memcpy as weak symbols.  In mm/kasan/kasan.c we have our
      own implementation of those functions which checks memory before accessing
      it.
      
      Default memset/memmove/memcpy now now always have aliases with '__'
      prefix.  For files that built without kasan instrumentation (e.g.
      mm/slub.c) original mem* replaced (via #define) with prefixed variants,
      cause we don't want to check memory accesses there.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      393f203f
    • A
      mm: slub: add kernel address sanitizer support for slub allocator · 0316bec2
      Andrey Ryabinin 提交于
      With this patch kasan will be able to catch bugs in memory allocated by
      slub.  Initially all objects in newly allocated slab page, marked as
      redzone.  Later, when allocation of slub object happens, requested by
      caller number of bytes marked as accessible, and the rest of the object
      (including slub's metadata) marked as redzone (inaccessible).
      
      We also mark object as accessible if ksize was called for this object.
      There is some places in kernel where ksize function is called to inquire
      size of really allocated area.  Such callers could validly access whole
      allocated memory, so it should be marked as accessible.
      
      Code in slub.c and slab_common.c files could validly access to object's
      metadata, so instrumentation for this files are disabled.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Signed-off-by: NDmitry Chernenkov <dmitryc@google.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0316bec2
    • A
      mm: page_alloc: add kasan hooks on alloc and free paths · b8c73fc2
      Andrey Ryabinin 提交于
      Add kernel address sanitizer hooks to mark allocated page's addresses as
      accessible in corresponding shadow region.  Mark freed pages as
      inaccessible.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b8c73fc2
    • A
      kasan: disable memory hotplug · 786a8959
      Andrey Ryabinin 提交于
      Currently memory hotplug won't work with KASan.  As we don't have shadow
      for hotplugged memory, kernel will crash on the first access to it.  To
      make this work we will need to allocate shadow for new memory.
      
      At some future point proper memory hotplug support will be implemented.
      Until then, print a warning at startup and disable memory hot-add.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      786a8959
    • A
      kasan: add kernel address sanitizer infrastructure · 0b24becc
      Andrey Ryabinin 提交于
      Kernel Address sanitizer (KASan) is a dynamic memory error detector.  It
      provides fast and comprehensive solution for finding use-after-free and
      out-of-bounds bugs.
      
      KASAN uses compile-time instrumentation for checking every memory access,
      therefore GCC > v4.9.2 required.  v4.9.2 almost works, but has issues with
      putting symbol aliases into the wrong section, which breaks kasan
      instrumentation of globals.
      
      This patch only adds infrastructure for kernel address sanitizer.  It's
      not available for use yet.  The idea and some code was borrowed from [1].
      
      Basic idea:
      
      The main idea of KASAN is to use shadow memory to record whether each byte
      of memory is safe to access or not, and use compiler's instrumentation to
      check the shadow memory on each memory access.
      
      Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
      memory and uses direct mapping with a scale and offset to translate a
      memory address to its corresponding shadow address.
      
      Here is function to translate address to corresponding shadow address:
      
           unsigned long kasan_mem_to_shadow(unsigned long addr)
           {
                      return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
           }
      
      where KASAN_SHADOW_SCALE_SHIFT = 3.
      
      So for every 8 bytes there is one corresponding byte of shadow memory.
      The following encoding used for each shadow byte: 0 means that all 8 bytes
      of the corresponding memory region are valid for access; k (1 <= k <= 7)
      means that the first k bytes are valid for access, and other (8 - k) bytes
      are not; Any negative value indicates that the entire 8-bytes are
      inaccessible.  Different negative values used to distinguish between
      different kinds of inaccessible memory (redzones, freed memory) (see
      mm/kasan/kasan.h).
      
      To be able to detect accesses to bad memory we need a special compiler.
      Such compiler inserts a specific function calls (__asan_load*(addr),
      __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
      
      These functions check whether memory region is valid to access or not by
      checking corresponding shadow memory.  If access is not valid an error
      printed.
      
      Historical background of the address sanitizer from Dmitry Vyukov:
      
      	"We've developed the set of tools, AddressSanitizer (Asan),
      	ThreadSanitizer and MemorySanitizer, for user space. We actively use
      	them for testing inside of Google (continuous testing, fuzzing,
      	running prod services). To date the tools have found more than 10'000
      	scary bugs in Chromium, Google internal codebase and various
      	open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
      	lots of others): [2] [3] [4].
      	The tools are part of both gcc and clang compilers.
      
      	We have not yet done massive testing under the Kernel AddressSanitizer
      	(it's kind of chicken and egg problem, you need it to be upstream to
      	start applying it extensively). To date it has found about 50 bugs.
      	Bugs that we've found in upstream kernel are listed in [5].
      	We've also found ~20 bugs in out internal version of the kernel. Also
      	people from Samsung and Oracle have found some.
      
      	[...]
      
      	As others noted, the main feature of AddressSanitizer is its
      	performance due to inline compiler instrumentation and simple linear
      	shadow memory. User-space Asan has ~2x slowdown on computational
      	programs and ~2x memory consumption increase. Taking into account that
      	kernel usually consumes only small fraction of CPU and memory when
      	running real user-space programs, I would expect that kernel Asan will
      	have ~10-30% slowdown and similar memory consumption increase (when we
      	finish all tuning).
      
      	I agree that Asan can well replace kmemcheck. We have plans to start
      	working on Kernel MemorySanitizer that finds uses of unitialized
      	memory. Asan+Msan will provide feature-parity with kmemcheck. As
      	others noted, Asan will unlikely replace debug slab and pagealloc that
      	can be enabled at runtime. Asan uses compiler instrumentation, so even
      	if it is disabled, it still incurs visible overheads.
      
      	Asan technology is easily portable to other architectures. Compiler
      	instrumentation is fully portable. Runtime has some arch-dependent
      	parts like shadow mapping and atomic operation interception. They are
      	relatively easy to port."
      
      Comparison with other debugging features:
      ========================================
      
      KMEMCHECK:
      
        - KASan can do almost everything that kmemcheck can.  KASan uses
          compile-time instrumentation, which makes it significantly faster than
          kmemcheck.  The only advantage of kmemcheck over KASan is detection of
          uninitialized memory reads.
      
          Some brief performance testing showed that kasan could be
          x500-x600 times faster than kmemcheck:
      
      $ netperf -l 30
      		MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
      		Recv   Send    Send
      		Socket Socket  Message  Elapsed
      		Size   Size    Size     Time     Throughput
      		bytes  bytes   bytes    secs.    10^6bits/sec
      
      no debug:	87380  16384  16384    30.00    41624.72
      
      kasan inline:	87380  16384  16384    30.00    12870.54
      
      kasan outline:	87380  16384  16384    30.00    10586.39
      
      kmemcheck: 	87380  16384  16384    30.03      20.23
      
        - Also kmemcheck couldn't work on several CPUs.  It always sets
          number of CPUs to 1.  KASan doesn't have such limitation.
      
      DEBUG_PAGEALLOC:
      	- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
      	  granularity level, so it able to find more bugs.
      
      SLUB_DEBUG (poisoning, redzones):
      	- SLUB_DEBUG has lower overhead than KASan.
      
      	- SLUB_DEBUG in most cases are not able to detect bad reads,
      	  KASan able to detect both reads and writes.
      
      	- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
      	  bugs only on allocation/freeing of object. KASan catch
      	  bugs right before it will happen, so we always know exact
      	  place of first bad read/write.
      
      [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
      [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
      [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
      [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
      [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
      
      Based on work by Andrey Konovalov.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Acked-by: NMichal Marek <mmarek@suse.cz>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Stephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0b24becc