- 10 3月, 2015 1 次提交
-
-
由 Andy Lutomirski 提交于
The one in do_debug() is probably harmless, but better safe than sorry. Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Cc: <stable@vger.kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/d67deaa9df5458363623001f252d1aee3215d014.1425948056.git.luto@amacapital.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 3月, 2015 1 次提交
-
-
由 Andy Lutomirski 提交于
I broke 32-bit kernels. The implementation of sp0 was correct as far as I can tell, but sp0 was much weirder on x86_32 than I realized. It has the following issues: - Init's sp0 is inconsistent with everything else's: non-init tasks are offset by 8 bytes. (I have no idea why, and the comment is unhelpful.) - vm86 does crazy things to sp0. Fix it up by replacing this_cpu_sp0() with current_top_of_stack() and using a new percpu variable to track the top of the stack on x86_32. Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 75182b16 ("x86/asm/entry: Switch all C consumers of kernel_stack to this_cpu_sp0()") Link: http://lkml.kernel.org/r/d09dbe270883433776e0cbee3c7079433349e96d.1425692936.git.luto@amacapital.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 3月, 2015 1 次提交
-
-
由 Andy Lutomirski 提交于
This will make modifying the semantics of kernel_stack easier. The change to ist_begin_non_atomic() is necessary because sp0 no longer points to the same THREAD_SIZE-aligned region as RSP; it's one byte too high for that. At Denys' suggestion, rather than offsetting it, just check explicitly that we're in the correct range ending at sp0. This has the added benefit that we no longer assume that the thread stack is aligned to THREAD_SIZE. Suggested-by: NDenys Vlasenko <dvlasenk@redhat.com> Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ef8254ad414cbb8034c9a56396eeb24f5dd5b0de.1425611534.git.luto@amacapital.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 3月, 2015 1 次提交
-
-
由 Wang Nan 提交于
As early_trap_init() doesn't use IST, replace set_intr_gate_ist() and set_system_intr_gate_ist() with their standard counterparts. set_intr_gate() requires a trace_debug symbol which we don't have and won't use. This patch separates set_intr_gate() into two parts, and uses base version in early_trap_init(). Reported-by: NAndy Lutomirski <luto@amacapital.net> Signed-off-by: NWang Nan <wangnan0@huawei.com> Acked-by: NAndy Lutomirski <luto@amacapital.net> Cc: <dave.hansen@linux.intel.com> Cc: <lizefan@huawei.com> Cc: <masami.hiramatsu.pt@hitachi.com> Cc: <oleg@redhat.com> Cc: <rostedt@goodmis.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1425010789-13714-1-git-send-email-wangnan0@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 26 2月, 2015 1 次提交
-
-
由 Wang Nan 提交于
Before this patch early_trap_init() installs DEBUG_STACK for X86_TRAP_BP and X86_TRAP_DB. However, DEBUG_STACK doesn't work correctly until cpu_init() <-- trap_init(). This patch passes 0 to set_intr_gate_ist() and set_system_intr_gate_ist() instead of DEBUG_STACK to let it use same stack as kernel, and installs DEBUG_STACK for them in trap_init(). As core runs at ring 0 between early_trap_init() and trap_init(), there is no chance to get a bad stack before trap_init(). As NMI is also enabled in trap_init(), we don't need to care about is_debug_stack() and related things used in arch/x86/kernel/nmi.c. Signed-off-by: NWang Nan <wangnan0@huawei.com> Reviewed-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: <dave.hansen@linux.intel.com> Cc: <lizefan@huawei.com> Cc: <luto@amacapital.net> Cc: <oleg@redhat.com> Link: http://lkml.kernel.org/r/1424929779-13174-1-git-send-email-wangnan0@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 2月, 2015 1 次提交
-
-
由 Andy Lutomirski 提交于
context_tracking_user_exit() has no effect if in_interrupt() returns true, so ist_enter() didn't work. Fix it by calling exception_enter(), and thus context_tracking_user_exit(), before incrementing the preempt count. This also adds an assertion that will catch the problem reliably if CONFIG_PROVE_RCU=y to help prevent the bug from being reintroduced. Link: http://lkml.kernel.org/r/261ebee6aee55a4724746d0d7024697013c40a08.1422709102.git.luto@amacapital.net Fixes: 95927475 x86, traps: Track entry into and exit from IST context Reported-and-tested-by: NSasha Levin <sasha.levin@oracle.com> Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
-
- 20 1月, 2015 1 次提交
-
-
由 Oleg Nesterov 提交于
math_state_restore() can race with kernel_fpu_begin() if irq comes right after __thread_fpu_begin(), __save_init_fpu() will overwrite fpu->state we are going to restore. Add 2 simple helpers, kernel_fpu_disable() and kernel_fpu_enable() which simply set/clear in_kernel_fpu, and change math_state_restore() to exclude kernel_fpu_begin() in between. Alternatively we could use local_irq_save/restore, but probably these new helpers can have more users. Perhaps they should disable/enable preemption themselves, in this case we can remove preempt_disable() in __restore_xstate_sig(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: matt.fleming@intel.com Cc: bp@suse.de Cc: pbonzini@redhat.com Cc: luto@amacapital.net Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Suresh Siddha <sbsiddha@gmail.com> Link: http://lkml.kernel.org/r/20150115192028.GD27332@redhat.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 03 1月, 2015 3 次提交
-
-
由 Andy Lutomirski 提交于
In some IST handlers, if the interrupt came from user mode, we can safely enable preemption. Add helpers to do it safely. This is intended to be used my the memory failure code in do_machine_check. Acked-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
-
由 Andy Lutomirski 提交于
We currently pretend that IST context is like standard exception context, but this is incorrect. IST entries from userspace are like standard exceptions except that they use per-cpu stacks, so they are atomic. IST entries from kernel space are like NMIs from RCU's perspective -- they are not quiescent states even if they interrupted the kernel during a quiescent state. Add and use ist_enter and ist_exit to track IST context. Even though x86_32 has no IST stacks, we track these interrupts the same way. This fixes two issues: - Scheduling from an IST interrupt handler will now warn. It would previously appear to work as long as we got lucky and nothing overwrote the stack frame. (I don't know of any bugs in this that would trigger the warning, but it's good to be on the safe side.) - RCU handling in IST context was dangerous. As far as I know, only machine checks were likely to trigger this, but it's good to be on the safe side. Note that the machine check handlers appears to have been missing any context tracking at all before this patch. Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
-
由 Andy Lutomirski 提交于
This causes all non-NMI, non-double-fault kernel entries from userspace to run on the normal kernel stack. Double-fault is exempt to minimize confusion if we double-fault directly from userspace due to a bad kernel stack. This is, suprisingly, simpler and shorter than the current code. It removes the IMO rather frightening paranoid_userspace path, and it make sync_regs much simpler. There is no risk of stack overflow due to this change -- the kernel stack that we switch to is empty. This will also enable us to create non-atomic sections within machine checks from userspace, which will simplify memory failure handling. It will also allow the upcoming fsgsbase code to be simplified, because it doesn't need to worry about usergs when scheduling in paranoid_exit, as that code no longer exists. Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Acked-by: NBorislav Petkov <bp@alien8.de> Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
-
- 08 12月, 2014 1 次提交
-
-
由 Dan Carpenter 提交于
We should be checking IS_ERR() here. PTR_ERR() is always true. Fixes: fe3d197f ('x86, mpx: On-demand kernel allocation of bounds tables') Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20141125172114.GA24535@mwandaSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 11月, 2014 1 次提交
-
-
由 Andy Lutomirski 提交于
These functions can be executed on the int3 stack, so kprobes are dangerous. Tracing is probably a bad idea, too. Fixes: b645af2d ("x86_64, traps: Rework bad_iret") Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Cc: <stable@vger.kernel.org> # Backport as far back as it would apply Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/50e33d26adca60816f3ba968875801652507d0c4.1416870125.git.luto@amacapital.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 11月, 2014 3 次提交
-
-
由 Andy Lutomirski 提交于
It's possible for iretq to userspace to fail. This can happen because of a bad CS, SS, or RIP. Historically, we've handled it by fixing up an exception from iretq to land at bad_iret, which pretends that the failed iret frame was really the hardware part of #GP(0) from userspace. To make this work, there's an extra fixup to fudge the gs base into a usable state. This is suboptimal because it loses the original exception. It's also buggy because there's no guarantee that we were on the kernel stack to begin with. For example, if the failing iret happened on return from an NMI, then we'll end up executing general_protection on the NMI stack. This is bad for several reasons, the most immediate of which is that general_protection, as a non-paranoid idtentry, will try to deliver signals and/or schedule from the wrong stack. This patch throws out bad_iret entirely. As a replacement, it augments the existing swapgs fudge into a full-blown iret fixup, mostly written in C. It's should be clearer and more correct. Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Lutomirski 提交于
On a 32-bit kernel, this has no effect, since there are no IST stacks. On a 64-bit kernel, #SS can only happen in user code, on a failed iret to user space, a canonical violation on access via RSP or RBP, or a genuine stack segment violation in 32-bit kernel code. The first two cases don't need IST, and the latter two cases are unlikely fatal bugs, and promoting them to double faults would be fine. This fixes a bug in which the espfix64 code mishandles a stack segment violation. This saves 4k of memory per CPU and a tiny bit of code. Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Lutomirski 提交于
There's nothing special enough about the espfix64 double fault fixup to justify writing it in assembly. Move it to C. This also fixes a bug: if the double fault came from an IST stack, the old asm code would return to a partially uninitialized stack frame. Fixes: 3891a04aSigned-off-by: NAndy Lutomirski <luto@amacapital.net> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 11月, 2014 1 次提交
-
-
由 Dave Hansen 提交于
This is really the meat of the MPX patch set. If there is one patch to review in the entire series, this is the one. There is a new ABI here and this kernel code also interacts with userspace memory in a relatively unusual manner. (small FAQ below). Long Description: This patch adds two prctl() commands to provide enable or disable the management of bounds tables in kernel, including on-demand kernel allocation (See the patch "on-demand kernel allocation of bounds tables") and cleanup (See the patch "cleanup unused bound tables"). Applications do not strictly need the kernel to manage bounds tables and we expect some applications to use MPX without taking advantage of this kernel support. This means the kernel can not simply infer whether an application needs bounds table management from the MPX registers. The prctl() is an explicit signal from userspace. PR_MPX_ENABLE_MANAGEMENT is meant to be a signal from userspace to require kernel's help in managing bounds tables. PR_MPX_DISABLE_MANAGEMENT is the opposite, meaning that userspace don't want kernel's help any more. With PR_MPX_DISABLE_MANAGEMENT, the kernel won't allocate and free bounds tables even if the CPU supports MPX. PR_MPX_ENABLE_MANAGEMENT will fetch the base address of the bounds directory out of a userspace register (bndcfgu) and then cache it into a new field (->bd_addr) in the 'mm_struct'. PR_MPX_DISABLE_MANAGEMENT will set "bd_addr" to an invalid address. Using this scheme, we can use "bd_addr" to determine whether the management of bounds tables in kernel is enabled. Also, the only way to access that bndcfgu register is via an xsaves, which can be expensive. Caching "bd_addr" like this also helps reduce the cost of those xsaves when doing table cleanup at munmap() time. Unfortunately, we can not apply this optimization to #BR fault time because we need an xsave to get the value of BNDSTATUS. ==== Why does the hardware even have these Bounds Tables? ==== MPX only has 4 hardware registers for storing bounds information. If MPX-enabled code needs more than these 4 registers, it needs to spill them somewhere. It has two special instructions for this which allow the bounds to be moved between the bounds registers and some new "bounds tables". They are similar conceptually to a page fault and will be raised by the MPX hardware during both bounds violations or when the tables are not present. This patch handles those #BR exceptions for not-present tables by carving the space out of the normal processes address space (essentially calling the new mmap() interface indroduced earlier in this patch set.) and then pointing the bounds-directory over to it. The tables *need* to be accessed and controlled by userspace because the instructions for moving bounds in and out of them are extremely frequent. They potentially happen every time a register pointing to memory is dereferenced. Any direct kernel involvement (like a syscall) to access the tables would obviously destroy performance. ==== Why not do this in userspace? ==== This patch is obviously doing this allocation in the kernel. However, MPX does not strictly *require* anything in the kernel. It can theoretically be done completely from userspace. Here are a few ways this *could* be done. I don't think any of them are practical in the real-world, but here they are. Q: Can virtual space simply be reserved for the bounds tables so that we never have to allocate them? A: As noted earlier, these tables are *HUGE*. An X-GB virtual area needs 4*X GB of virtual space, plus 2GB for the bounds directory. If we were to preallocate them for the 128TB of user virtual address space, we would need to reserve 512TB+2GB, which is larger than the entire virtual address space today. This means they can not be reserved ahead of time. Also, a single process's pre-popualated bounds directory consumes 2GB of virtual *AND* physical memory. IOW, it's completely infeasible to prepopulate bounds directories. Q: Can we preallocate bounds table space at the same time memory is allocated which might contain pointers that might eventually need bounds tables? A: This would work if we could hook the site of each and every memory allocation syscall. This can be done for small, constrained applications. But, it isn't practical at a larger scale since a given app has no way of controlling how all the parts of the app might allocate memory (think libraries). The kernel is really the only place to intercept these calls. Q: Could a bounds fault be handed to userspace and the tables allocated there in a signal handler instead of in the kernel? A: (thanks to tglx) mmap() is not on the list of safe async handler functions and even if mmap() would work it still requires locking or nasty tricks to keep track of the allocation state there. Having ruled out all of the userspace-only approaches for managing bounds tables that we could think of, we create them on demand in the kernel. Based-on-patch-by: NQiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: linux-mm@kvack.org Cc: linux-mips@linux-mips.org Cc: Dave Hansen <dave@sr71.net> Link: http://lkml.kernel.org/r/20141114151829.AD4310DE@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 14 6月, 2014 1 次提交
-
-
由 Masami Hiramatsu 提交于
This essentially reverts commit: ecd50f71 ("kprobes, x86: Call exception_enter after kprobes handled") since it causes build errors with CONFIG_CONTEXT_TRACKING and that has been made from misunderstandings; context_track_user_*() don't involve much in interrupt context, it just returns if in_interrupt() is true. Instead of changing the do_debug/int3(), this just adds context_track_user_*() to kprobes blacklist, since those are still can be called right before kprobes handles int3 and debug exceptions, and probing those will cause an infinite loop. Reported-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Borislav Petkov <bp@suse.de> Cc: Kees Cook <keescook@chromium.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20140614064711.7865.45957.stgit@kbuild-fedora.novalocalSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 5月, 2014 7 次提交
-
-
由 Oleg Nesterov 提交于
If the probed insn triggers a trap, ->si_addr = regs->ip is technically correct, but this is not what the signal handler wants; we need to pass the address of the probed insn, not the address of xol slot. Add the new arch-agnostic helper, uprobe_get_trap_addr(), and change fill_trap_info() and math_error() to use it. !CONFIG_UPROBES case in uprobes.h uses a macro to avoid include hell and ensure that it can be compiled even if an architecture doesn't define instruction_pointer(). Test-case: #include <signal.h> #include <stdio.h> #include <unistd.h> extern void probe_div(void); void sigh(int sig, siginfo_t *info, void *c) { int passed = (info->si_addr == probe_div); printf(passed ? "PASS\n" : "FAIL\n"); _exit(!passed); } int main(void) { struct sigaction sa = { .sa_sigaction = sigh, .sa_flags = SA_SIGINFO, }; sigaction(SIGFPE, &sa, NULL); asm ( "xor %ecx,%ecx\n" ".globl probe_div; probe_div:\n" "idiv %ecx\n" ); return 0; } it fails if probe_div() is probed. Note: show_unhandled_signals users should probably use this helper too, but we need to cleanup them first. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
-
由 Oleg Nesterov 提交于
Now that DO_ERROR_INFO() doesn't differ from DO_ERROR() we can remove it and use DO_ERROR() instead. Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
由 Oleg Nesterov 提交于
Move the callsite of fill_trap_info() into do_error_trap() and remove the "siginfo_t *info" argument. This obviously breaks DO_ERROR() which passed info == NULL, we simply change fill_trap_info() to return "siginfo_t *" and add the "default" case which returns SEND_SIG_PRIV. Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
由 Oleg Nesterov 提交于
Extract the fill-siginfo code from DO_ERROR_INFO() into the new helper, fill_trap_info(). It can calculate si_code and si_addr looking at trapnr, so we can remove these arguments from DO_ERROR_INFO() and simplify the source code. The generated code is the same, __builtin_constant_p(trapnr) == T. Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
由 Oleg Nesterov 提交于
Move the common code from DO_ERROR() and DO_ERROR_INFO() into the new helper, do_error_trap(). This simplifies define's and shaves 527 bytes from traps.o. Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
由 Oleg Nesterov 提交于
force_sig() is just force_sig_info(SEND_SIG_PRIV). Imho it should die, we have too many ugly "send signal" helpers. And do_trap() looks just ugly because it uses force_sig_info() or force_sig() depending on info != NULL. Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
由 Oleg Nesterov 提交于
Trivial, make math_error() static. Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
- 06 5月, 2014 1 次提交
-
-
由 Andi Kleen 提交于
As requested by Linus add explicit __visible to the asmlinkage users. This marks all functions visible to assembler. Tree sweep for arch/x86/* Signed-off-by: NAndi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/1398984278-29319-3-git-send-email-andi@firstfloor.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 24 4月, 2014 3 次提交
-
-
由 Masami Hiramatsu 提交于
Use NOKPROBE_SYMBOL macro for protecting functions from kprobes instead of __kprobes annotation under arch/x86. This applies nokprobe_inline annotation for some cases, because NOKPROBE_SYMBOL() will inhibit inlining by referring the symbol address. This just folds a bunch of previous NOKPROBE_SYMBOL() cleanup patches for x86 to one patch. Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081814.26341.51656.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp> Cc: Gleb Natapov <gleb@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Lebon <jlebon@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Masami Hiramatsu 提交于
Move exception_enter() call after kprobes handler is done. Since the exception_enter() involves many other functions (like printk), it can cause recursive int3/break loop when kprobes probe such functions. Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@suse.de> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Kees Cook <keescook@chromium.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/20140417081740.26341.10894.stgit@ltc230.yrl.intra.hitachi.co.jpSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Masami Hiramatsu 提交于
To avoid a kernel crash by probing on lockdep code, call kprobe_int3_handler() and kprobe_debug_handler()(which was formerly called post_kprobe_handler()) directly from do_int3 and do_debug. Currently kprobes uses notify_die() to hook the int3/debug exceptoins. Since there is a locking code in notify_die, the lockdep code can be invoked. And because the lockdep involves printk() related things, theoretically, we need to prohibit probing on such code, which means much longer blacklist we'll have. Instead, hooking the int3/debug for kprobes before notify_die() can avoid this problem. Anyway, most of the int3 handlers in the kernel are already called from do_int3 directly, e.g. ftrace_int3_handler, poke_int3_handler, kgdb_ll_trap. Actually only kprobe_exceptions_notify is on the notifier_call_chain. Signed-off-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@suse.de> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Jonathan Lebon <jlebon@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/20140417081733.26341.24423.stgit@ltc230.yrl.intra.hitachi.co.jpSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 12 12月, 2013 1 次提交
-
-
由 Ingo Molnar 提交于
So I was reading the exception handler generation code and got a real headache looking at the unstructured mess that our DO_ERROR*() generation code is today. Make it more readable. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: http://lkml.kernel.org/n/tip-kuabysiykvUJpgus35lhnhvs@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 11月, 2013 1 次提交
-
-
由 Vineet Gupta 提交于
Only a couple of arches (sh/x86) use fpu_counter in task_struct so it can be moved out into ARCH specific thread_struct, reducing the size of task_struct for other arches. Compile tested i386_defconfig + gcc 4.7.3 Signed-off-by: NVineet Gupta <vgupta@synopsys.com> Acked-by: NIngo Molnar <mingo@kernel.org> Cc: Paul Mundt <paul.mundt@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 11月, 2013 1 次提交
-
-
由 Seiji Aguchi 提交于
This patch registers exception handlers for tracing to a trace IDT. To implemented it in set_intr_gate(), this patch does followings. - Register the exception handlers to the trace IDT by prepending "trace_" to the handler's names. - Also, newly introduce trace_page_fault() to add tracepoints in a subsequent patch. Signed-off-by: NSeiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/52716DEC.5050204@hds.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 25 9月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Rewrite the preempt_count macros in order to extract the 3 basic preempt_count value modifiers: __preempt_count_add() __preempt_count_sub() and the new: __preempt_count_dec_and_test() And since we're at it anyway, replace the unconventional $op_preempt_count names with the more conventional preempt_count_$op. Since these basic operators are equivalent to the previous _notrace() variants, do away with the _notrace() versions. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 7月, 2013 1 次提交
-
-
由 Jiri Kosina 提交于
In fd4363ff ("x86: Introduce int3 (breakpoint)-based instruction patching"), the mechanism that was introduced for notifying alternatives code from int3 exception handler that and exception occured was die_notifier. This is however problematic, as early code might be using jump labels even before the notifier registration has been performed, which will then lead to an oops due to unhandled exception. One of such occurences has been encountered by Fengguang: int3: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: CPU: 1 PID: 0 Comm: swapper/1 Not tainted 3.11.0-rc1-01429-g04bf576 #8 task: ffff88000da1b040 ti: ffff88000da1c000 task.ti: ffff88000da1c000 RIP: 0010:[<ffffffff811098cc>] [<ffffffff811098cc>] ttwu_do_wakeup+0x28/0x225 RSP: 0000:ffff88000dd03f10 EFLAGS: 00000006 RAX: 0000000000000000 RBX: ffff88000dd12940 RCX: ffffffff81769c40 RDX: 0000000000000002 RSI: 0000000000000000 RDI: 0000000000000001 RBP: ffff88000dd03f28 R08: ffffffff8176a8c0 R09: 0000000000000002 R10: ffffffff810ff484 R11: ffff88000dd129e8 R12: ffff88000dbc90c0 R13: ffff88000dbc90c0 R14: ffff88000da1dfd8 R15: ffff88000da1dfd8 FS: 0000000000000000(0000) GS:ffff88000dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000ffffffff CR3: 0000000001c88000 CR4: 00000000000006e0 Stack: ffff88000dd12940 ffff88000dbc90c0 ffff88000da1dfd8 ffff88000dd03f48 ffffffff81109e2b ffff88000dd12940 0000000000000000 ffff88000dd03f68 ffffffff81109e9e 0000000000000000 0000000000012940 ffff88000dd03f98 Call Trace: <IRQ> [<ffffffff81109e2b>] ttwu_do_activate.constprop.56+0x6d/0x79 [<ffffffff81109e9e>] sched_ttwu_pending+0x67/0x84 [<ffffffff8110c845>] scheduler_ipi+0x15a/0x2b0 [<ffffffff8104dfb4>] smp_reschedule_interrupt+0x38/0x41 [<ffffffff8173bf5d>] reschedule_interrupt+0x6d/0x80 <EOI> [<ffffffff810ff484>] ? __atomic_notifier_call_chain+0x5/0xc1 [<ffffffff8105cc30>] ? native_safe_halt+0xd/0x16 [<ffffffff81015f10>] default_idle+0x147/0x282 [<ffffffff81017026>] arch_cpu_idle+0x3d/0x5d [<ffffffff81127d6a>] cpu_idle_loop+0x46d/0x5db [<ffffffff81127f5c>] cpu_startup_entry+0x84/0x84 [<ffffffff8104f4f8>] start_secondary+0x3c8/0x3d5 [...] Fix this by directly calling poke_int3_handler() from the int3 exception handler (analogically to what ftrace has been doing already), instead of relying on notifier, registration of which might not have yet been finalized by the time of the first trap. Reported-and-tested-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz> Acked-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1307231007490.14024@pobox.suse.czSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 7月, 2013 1 次提交
-
-
由 Kees Cook 提交于
Since the IDT is referenced from a fixmap, make sure it is page aligned. Merge with 32-bit one, since it was already aligned to deal with F00F bug. Since bss is cleared before IDT setup, it can live there. This also moves the other *_idt_table variables into common locations. This avoids the risk of the IDT ever being moved in the bss and having the mapping be offset, resulting in calling incorrect handlers. In the current upstream kernel this is not a manifested bug, but heavily patched kernels (such as those using the PaX patch series) did encounter this bug. The tables other than idt_table technically do not need to be page aligned, at least not at the current time, but using a common declaration avoids mistakes. On 64 bits the table is exactly one page long, anyway. Signed-off-by: NKees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20130716183441.GA14232@www.outflux.netReported-by: NPaX Team <pageexec@gmail.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 21 6月, 2013 1 次提交
-
-
由 Seiji Aguchi 提交于
Rename variables for debugging to describe meaning of them precisely. Also, introduce a generic way to switch IDT by checking a current state, debug on/off. Signed-off-by: NSeiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/51C323A8.7050905@hds.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: Steven Rostedt <rostedt@goodmis.org>
-
- 19 6月, 2013 1 次提交
-
-
由 Rusty Russell 提交于
62edab90 changed the argument to notify_die() from dr6 to &dr6, but weirdly, used PTR_ERR() to cast it to a long. Since dr6 is on the stack, this is an abuse of PTR_ERR(). Cast to long, as per kernel standard. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1371357768-4968-8-git-send-email-rusty@rustcorp.com.auSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 5月, 2013 1 次提交
-
-
由 Borislav Petkov 提交于
It is sometimes very helpful to be able to pinpoint the location which causes a double fault before it turns into a triple fault and the machine reboots. We have this for 32-bit already so extend it to 64-bit. On 64-bit we get the register snapshot at #DF time and not from the first exception which actually causes the #DF. It should be close enough, though. [ hpa: and definitely better than nothing, which is what we have now. ] Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1368093749-31296-1-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 12 4月, 2013 1 次提交
-
-
由 Kees Cook 提交于
Make a copy of the IDT (as seen via the "sidt" instruction) read-only. This primarily removes the IDT from being a target for arbitrary memory write attacks, and has the added benefit of also not leaking the kernel base offset, if it has been relocated. We already did this on vendor == Intel and family == 5 because of the F0 0F bug -- regardless of if a particular CPU had the F0 0F bug or not. Since the workaround was so cheap, there simply was no reason to be very specific. This patch extends the readonly alias to all CPUs, but does not activate the #PF to #UD conversion code needed to deliver the proper exception in the F0 0F case except on Intel family 5 processors. Signed-off-by: NKees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20130410192422.GA17344@www.outflux.net Cc: Eric Northup <digitaleric@google.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 08 3月, 2013 2 次提交
-
-
由 Frederic Weisbecker 提交于
On exception exit, we restore the previous context tracking state based on the regs of the interrupted frame. Iff that frame is in user mode as stated by user_mode() helper, we restore the context tracking user mode. However there is a tiny chunck of low level arch code after we pass through user_enter() and until the CPU eventually resumes userspace. If an exception happens in this tiny area, exception_enter() correctly exits the context tracking user mode but exception_exit() won't restore it because of the value returned by user_mode(regs). As a result we may return to userspace with the wrong context tracking state. To fix this, change exception_enter() to return the context tracking state prior to its call and pass this saved state to exception_exit(). This restores the real context tracking state of the interrupted frame. (May be this patch was suggested to me, I don't recall exactly. If so, sorry for the missing credit). Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Mats Liljegren <mats.liljegren@enea.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Frederic Weisbecker 提交于
Exceptions handling on context tracking should share common treatment: on entry we exit user mode if the exception triggered in that context. Then on exception exit we return to that previous context. Generalize this to avoid duplication across archs. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Mats Liljegren <mats.liljegren@enea.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-